language-icon Old Web
English
Sign In

Autotomy

Autotomy (from the Greek auto- 'self-' and tome 'severing', αὐτοτομία) or self-amputation is the behaviour whereby an animal sheds or discards one or more of its own appendages, usually as a self-defense mechanism to elude a predator's grasp or to distract the predator and thereby allow escape. Some animals have the ability to regenerate the lost body part later. Autotomy (from the Greek auto- 'self-' and tome 'severing', αὐτοτομία) or self-amputation is the behaviour whereby an animal sheds or discards one or more of its own appendages, usually as a self-defense mechanism to elude a predator's grasp or to distract the predator and thereby allow escape. Some animals have the ability to regenerate the lost body part later. Some lizards, salamanders and tuatara when caught by the tail will shed part of it in attempting to escape. In many species the detached tail will continue to wriggle, creating a deceptive sense of continued struggle, and distracting the predator's attention from the fleeing prey animal. Depending upon the species, the animal may be able to partially regenerate its tail, typically over a period of weeks or months. Though functional, the new tail section often is shorter and will contain cartilage rather than regenerated vertebrae of bone, and in colour and texture the skin of the regenerated organ generally differs distinctly from its original appearance. The technical term for this ability to drop the tail is caudal autotomy. In most lizards that sacrifice the tail in this manner, breakage occurs only when the tail is grasped with sufficient force, but some animals, such as some species of geckos, can perform true autotomy, throwing off the tail when sufficiently stressed, such as when attacked by ants. Caudal autotomy in lizards takes two forms. In the first form, called intervertebral autotomy, the tail breaks between the vertebrae. The second form of caudal autotomy is intravertebral autotomy, in which there are zones of weakness, fracture planes across each vertebra in the mid-part of the tail. In this second type of autotomy the lizard contracts a muscle to fracture a vertebra, rather than break the tail between two vertebrae. Sphincter muscles in the tail then contract around the caudal artery to minimize bleeding. Caudal autotomy is prevalent among lizards; it has been recorded in 13 of approximately 20 families. Caudal autotomy is present as an anti-predator tactic but is also present in species that have high rates of intraspecific competition and aggression. For example, the Agama agama lizard fights by using its tail as a whip against other conspecifics. It can autotomize its tail but this is met with a social cost - tail loss decreases social standing and mating ability. However, the regenerated tail in this species takes on a new club-like shape providing the male with a better fighting weapon, such that autotomy and regeneration work together to increase the lizards ability to survive and reproduce. Despite this mechanism’s effectiveness, it is also very costly and is employed only after other defenses have failed. One cost is to the immune system: tail loss results in a weakened immune system which allows for mites and other harmful organisms to have a larger negative impact on individuals and reduce their health and lifespan. Since the tail plays a significant role in locomotion and energy storage of fat deposits, it is too valuable to be dropped haphazardly. Many species have evolved specific behaviors after autotomy, such as decreased activity, in order to compensate for negative consequences such as depleted energy resources. Some such lizards, in which the tail is a major storage organ for accumulating reserves, will return to a dropped tail after the threat has passed, and will eat it to recover part of the sacrificed supplies. Conversely, some species have been observed to attack rivals and grab their tails, which they eat after their opponents flee. Regeneration is one of the highest priorities after autotomy, in order to optimize locomotor performance and recoup reproductive fitness. While regenerating their tails, caudal autotomy is restored at an energetic cost that often hinders body growth or intraspecies interactions. Fossils of reptiles possessing the ability to autotomize that are not within the lizard family have been found that date back to the late Carboniferous and Early Permian Epoch. Two squamate species from the Jurassic period, Eichstaettisaurus schroederi and Ardeosaurus digitatellus, were identified as having intervertebral autotomy planes, and these species were placed in the squamate taxonomy as being an ancestor of current existing geckos. At least two species of African spiny mice, Acomys kempi and Acomys percivali, are capable of autotomic release of skin, e.g. upon being captured by a predator. They are the first mammals known to do so. They can completely regenerate the autotomically released or otherwise damaged skin tissue — regrowing hair follicles, skin, sweat glands, fur and cartilage with little or no scarring. It is believed that the corresponding regeneration genes could also function in humans. Over 200 species of invertebrates are capable of using autotomy as an avoidance or protective behaviour. These animals can voluntarily shed appendages when necessary for survival. Autotomy can occur in response to chemical, thermal and electrical stimulation, but is perhaps most frequently a response to mechanical stimulation during capture by a predator. Autotomy serves either to improve the chances of escape or to reduce further damage occurring to the remainder of the animal such as the spread of a chemical toxin after being stung.

[ "Ecology", "Zoology", "Anatomy", "Paleontology", "Eupentacta quinquesemita" ]
Parent Topic
Child Topic
    No Parent Topic