language-icon Old Web
English
Sign In

Cosmic ray

Cosmic rays are a form of high-energy radiation, mainly originating outside the Solar System and even from distant galaxies. Upon impact with the Earth's atmosphere, cosmic rays can produce showers of secondary particles that sometimes reach the surface. Composed primarily of high-energy protons and atomic nuclei, they are originated either from the sun or from outside of our solar system. Data from the Fermi Space Telescope (2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the supernova explosions of stars. Active galactic nuclei also appear to produce cosmic rays, based on observations of neutrinos and gamma rays from blazar TXS 0506+056 in 2018. The term ray is somewhat of a misnomer due to a historical accident, as cosmic rays were at first, and wrongly, thought to be mostly electromagnetic radiation. In common scientific usage, high-energy particles with intrinsic mass are known as 'cosmic' rays, while photons, which are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by their common names, such as gamma rays or X-rays, depending on their photon energy. Of primary cosmic rays, which originate outside of Earth's atmosphere, about 99% are the nuclei of well-known atoms (stripped of their electron shells), and about 1% are solitary electrons (similar to beta particles). Of the nuclei, about 90% are simple protons (i.e., hydrogen nuclei); 9% are alpha particles, identical to helium nuclei; and 1% are the nuclei of heavier elements, called HZE ions. These fractions vary highly over the energy range of cosmic rays. A very small fraction are stable particles of antimatter, such as positrons or antiprotons. The precise nature of this remaining fraction is an area of active research. An active search from Earth orbit for anti-alpha particles has failed to detect them. Cosmic rays attract great interest practically, due to the damage they inflict on microelectronics and life outside the protection of an atmosphere and magnetic field, and scientifically, because the energies of the most energetic ultra-high-energy cosmic rays (UHECRs) have been observed to approach 3 × 1020 eV, about 40 million times the energy of particles accelerated by the Large Hadron Collider. One can show that such enormous energies might be achieved by means of the centrifugal mechanism of acceleration in active galactic nuclei. At 50 J, the highest-energy ultra-high-energy cosmic rays (such as the Oh-My-God particle recorded in 1991) have energies comparable to the kinetic energy of a 90-kilometre-per-hour (56 mph) baseball. As a result of these discoveries, there has been interest in investigating cosmic rays of even greater energies. Most cosmic rays, however, do not have such extreme energies; the energy distribution of cosmic rays peaks on 0.3 gigaelectronvolts (4.8×10−11 J). After the discovery of radioactivity by Henri Becquerel in 1896, it was generally believed that atmospheric electricity, ionization of the air, was caused only by radiation from radioactive elements in the ground or the radioactive gases or isotopes of radon they produce. Measurements of increasing ionization rates at increasing heights above the ground during the decade from 1900 to 1910 could be explained as due to absorption of the ionizing radiation by the intervening air. In 1909, Theodor Wulf developed an electrometer, a device to measure the rate of ion production inside a hermetically sealed container, and used it to show higher levels of radiation at the top of the Eiffel Tower than at its base. However, his paper published in Physikalische Zeitschrift was not widely accepted. In 1911, Domenico Pacini observed simultaneous variations of the rate of ionization over a lake, over the sea, and at a depth of 3 metres from the surface. Pacini concluded from the decrease of radioactivity underwater that a certain part of the ionization must be due to sources other than the radioactivity of the Earth. In 1912, Victor Hess carried three enhanced-accuracy Wulf electrometers to an altitude of 5,300 metres in a free balloon flight. He found the ionization rate increased approximately fourfold over the rate at ground level. Hess ruled out the Sun as the radiation's source by making a balloon ascent during a near-total eclipse. With the moon blocking much of the Sun's visible radiation, Hess still measured rising radiation at rising altitudes. He concluded that 'The results of the observations seem most likely to be explained by the assumption that radiation of very high penetrating power enters from above into our atmosphere.' In 1913–1914, Werner Kolhörster confirmed Victor Hess's earlier results by measuring the increased ionization enthalpy rate at an altitude of 9 km. Hess received the Nobel Prize in Physics in 1936 for his discovery.

[ "Astronomy", "Astrophysics", "Nuclear physics", "Streaming instability", "Cosmogenic nuclide", "Meter water equivalent", "Alpha Magnetic Spectrometer", "diffuse flux" ]
Parent Topic
Child Topic
    No Parent Topic