language-icon Old Web
English
Sign In

High frequency

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 to 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred metres). Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as 'skip' or 'skywave' propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (2.31–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.ELF 3 Hz/100 Mm 30 Hz/10 MmSLF 30 Hz/10 Mm 300 Hz/1 MmULF 300 Hz/1 Mm 3 kHz/100 kmVLF 3 kHz/100 km 30 kHz/10 kmLF 30 kHz/10 km 300 kHz/1 kmMF 300 kHz/1 km 3 MHz/100 mHF 3 MHz/100 m 30 MHz/10 mVHF 30 MHz/10 m 300 MHz/1 mUHF 300 MHz/1 m 3 GHz/100 mmSHF 3 GHz/100 mm 30 GHz/10 mmEHF 30 GHz/10 mm 300 GHz/1 mmTHF 300 GHz/1 mm 3 THz/0.1 mm High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 to 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters (ten to one hundred metres). Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as 'skip' or 'skywave' propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (2.31–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses. The dominant means of long-distance communication in this band is skywave ('skip') propagation, in which radio waves directed at an angle into the sky refract back to Earth from layers of ionized atoms in the ionosphere. By this method HF radio waves can travel beyond the horizon, around the curve of the Earth, and can be received at intercontinental distances. However, suitability of this portion of the spectrum for such communication varies greatly with a complex combination of factors:

[ "Ionosphere", "hf radio communication", "Automatic link establishment" ]
Parent Topic
Child Topic
    No Parent Topic