language-icon Old Web
English
Sign In

Crystallite

A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. The orientation of crystallites can be random with no preferred direction, called random texture, or directed, possibly due to growth and processing conditions. Fiber texture is an example of the latter. Crystallites are also referred to as grains. The areas where crystallites meet are known as grain boundaries. Polycrystalline or multicrystalline materials, or polycrystals are solids that are composed of many crystallites of varying size and orientation. A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. The orientation of crystallites can be random with no preferred direction, called random texture, or directed, possibly due to growth and processing conditions. Fiber texture is an example of the latter. Crystallites are also referred to as grains. The areas where crystallites meet are known as grain boundaries. Polycrystalline or multicrystalline materials, or polycrystals are solids that are composed of many crystallites of varying size and orientation. Most inorganic solids are polycrystalline, including all common metals, many ceramics, rocks, and ice. The extent to which a solid is crystalline (crystallinity) has important effects on its physical properties. Sulfur, while usually polycrystalline, may also occur in other allotropic forms with completely different properties. Although crystallites are referred to as grains, powder grains are different, as they can be composed of smaller polycrystalline grains themselves. While the structure of a (monocrystalline) crystal is highly ordered and its lattice is continuous and unbroken, amorphous materials, such as glass and many polymers, are non-crystalline and do not display any structures, as their constituents are not arranged in an ordered manner. Polycrystalline structures and paracrystalline phases are in-between these two extremes. Crystallite size is usually measured from X-ray diffraction patterns and grain size by other experimental techniques like transmission electron microscopy. Solid objects large enough to see and handle are rarely composed of a single crystal, except for a few cases (gems, silicon single crystals for the electronics industry, certain types of fiber, single crystals of a nickel-based superalloy for turbojet engines, and some ice crystals which can exceed 0.5 meters in diameter). Most materials are polycrystalline, made of a large number of single crystals – crystallites – held together by thin layers of amorphous solid. The crystallite size can vary from a few nanometers to several millimeters. If the individual crystallites are oriented completely at random, a large enough volume of polycrystalline material will be approximately isotropic. This property helps the simplifying assumptions of continuum mechanics to apply to real-world solids. However, most manufactured materials have some alignment to their crystallites, resulting in texture that must be taken into account for accurate predictions of their behavior and characteristics. When the crystallites are mostly ordered with just some random spread of orientations, one has a mosaic crystal. Material fractures can be either intergranular or a transgranular fracture. There is an ambiguity with powder grains: a powder grain can be made of several crystallites. Thus, the (powder) 'grain size' found by laser granulometry can be different from the 'grain size' (rather, crystallite size) found by X-ray diffraction (e.g. Scherrer method), by optical microscopy under polarised light, or by scanning electron microscopy (backscattered electrons). Coarse grained rocks are formed very slowly, while fine grained rocks are formed quickly, on geological time scales. If a rock forms very quickly, such as the solidification of lava ejected from a volcano, there may be no crystals at all. This is how obsidian forms. Grain boundaries are interfaces where crystals of different orientations meet. A grain boundary is a single-phase interface, with crystals on each side of the boundary being identical except in orientation. The term 'crystallite boundary' is sometimes, though rarely, used. Grain boundary areas contain those atoms that have been perturbed from their original lattice sites, dislocations, and impurities that have migrated to the lower energy grain boundary.

[ "Crystallography", "Analytical chemistry", "Inorganic chemistry", "Metallurgy", "polycrystalline thin films", "polycrystalline copper", "chemical spray", "polycrystalline silicon carbide", "Carbonado" ]
Parent Topic
Child Topic
    No Parent Topic