language-icon Old Web
English
Sign In

Molar concentration

Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per litre, having the unit symbol mol/L. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M. Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per litre, having the unit symbol mol/L. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M. Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c: Here, n is the amount of the solute in moles, N is the number of molecules present in vol (in litres), the ratio N/V is the number concentration C, and NA is the Avogadro constant, approximately 6.022×1023 mol−1. In thermodynamics the use of molar concentration is often not convenient because the volume of most solutions slightly depends on temperature due to thermal expansion. This problem is usually resolved by introducing temperature correction factors, or by using a temperature-independent measure of concentration such as molality. The reciprocal quantity represents the dilution (volume) which can appear in Ostwald's law of dilution. In the International System of Units (SI) the base unit for molar concentration is mol/m3. However, this is impractical for most laboratory purposes and most chemical literature traditionally uses mol/dm3, which is the same as mol/L. These traditional units are often denoted by the letter M, optionally preceded by an SI prefix as needed to denote sub-multiples, for example: The adjectives 'millimolar' and 'micromolar' refer to mM and μM (10−3 mol/L and 10−6 mol/L), respectively. The conversion to number concentration C i {displaystyle C_{i}} is given by where N A {displaystyle N_{ ext{A}}} is the Avogadro constant.

[ "Biochemistry", "Organic chemistry", "Inorganic chemistry", "Thermodynamics" ]
Parent Topic
Child Topic
    No Parent Topic