language-icon Old Web
English
Sign In

End-group

End groups are an important aspect of polymer synthesis and characterization. In polymer chemistry, end groups are functionalities or constitutional units that are at the extremity of a macromolecule or oligomer (IUPAC). In polymer synthesis, like condensation polymerization and free-radical types of polymerization, end-groups are commonly used and can be analyzed for example by nuclear magnetic resonance (NMR) to determine the average length of the polymer. Other methods for characterization of polymers where end-groups are used are mass spectrometry and vibrational spectrometry, like infrared and Raman spectrometry. Not only are these groups important for the analysis of the polymer, but they are also useful for grafting to and from a polymer chain to create a new copolymer. One example of an end group is in the polymer poly(ethylene glycol) diacrylate where the end-groups are circled. End groups are an important aspect of polymer synthesis and characterization. In polymer chemistry, end groups are functionalities or constitutional units that are at the extremity of a macromolecule or oligomer (IUPAC). In polymer synthesis, like condensation polymerization and free-radical types of polymerization, end-groups are commonly used and can be analyzed for example by nuclear magnetic resonance (NMR) to determine the average length of the polymer. Other methods for characterization of polymers where end-groups are used are mass spectrometry and vibrational spectrometry, like infrared and Raman spectrometry. Not only are these groups important for the analysis of the polymer, but they are also useful for grafting to and from a polymer chain to create a new copolymer. One example of an end group is in the polymer poly(ethylene glycol) diacrylate where the end-groups are circled. End groups are seen on all polymers and the functionality of those end groups can be important in determining the application of polymers. Each type of polymerization (free radical, condensation or etc.) have end groups that are typical for the polymerization, and knowledge of these can help to identify the type of polymerization method used to form the polymer. Step-growth polymerization involves two monomers with bi- or multifunctionality to form polymer chains. Many polymers are synthesized via step-growth polymerization and include polyesters, polyamides, and polyurethanes. A sub class of step-growth polymerization is condensation polymerization. Condensation polymerization is an important class of step-growth polymerization, which is formed simply by the reaction of two monomers and results in the release of a water molecule. Since these polymers are typically made up of two or more monomers, the resulting end groups are from the monomer functionality. Examples of condensation polymers can be seen with polyamides, polyacetals and polyesters. An example of polyester is polyethylene terephthalate (PET), which is made from the monomers terephthalic acid and ethylene glycol. If one of the components in the polymerization is in excess, then that polymers functionality will be at the ends of the polymers (a carboxylic acid or alcohol group respectively). The end groups that are found on polymers formed through free radical polymerization are a result from the initiators and termination method used. There are many types of initiators used in modern free radical polymerizations, and below are examples of some well-known ones. For example, azobisisobutyronitrile or AIBN forms radicals that can be used as the end groups for new starting polymer chains with styrene to form polystyrene. Once the polymer chain has formed and the reaction is terminated, the end group opposite from the initiator is a result of the terminating agent or the chain transfer agent used. Graft copolymers are generated by attaching chains of one monomer to the main chain of another polymer; a branched block copolymer is formed. Furthermore, end groups play an important role in the process of initiation, propagation and termination of graft polymers. Graft polymers can be achieved by either “grafting from” or “grafting to”; these different methods are able to produce a vast array of different polymer structures, which can be tailored to the application in question. The “grafting from” approach involves, for example, generation of radicals along a polymer chain, which can then be reacted with monomers to grow a new polymer from the backbone of another. In “grafting from” the initiation sites on the backbone of the first polymer can be part of the backbone structure originally or generated in situ. The “grafting to” approach involves the reaction of functionalized monomers to a polymer backbone. In graft polymers, end groups play an important role, for example, in the “grafting to” technique the generation of the reactive functionalized monomers occurs at the end group, which is then tethered to the polymer chain. There are various methods to synthesize graft polymers some of the more common include redox reaction to produce free radicals, by free radical polymerization techniques avoiding chain termination (ATRP, RAFT, Nitroxide mediated, for example) and step-growth polymerization. A schematic of “grafting from” and “grafting to” is illustrated in the figure below.

[ "Copolymer", "Polymerization", "Degenerative chain transfer", "Poly(ethoxyethyl glycidyl ether)", "Chain shuttling polymerization", "Kinetic chain length", "Telechelic polymer" ]
Parent Topic
Child Topic
    No Parent Topic