Knowledge representation and reasoning

Knowledge representation and reasoning (KR², KR&R) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can utilize to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.Any mechanically embodied intelligent process will be comprised of structural ingredients that a) we as external observers naturally take to represent a propositional account of the knowledge that the overall process exhibits, and b) independent of such external semantic attribution, play a formal but causal and essential role in engendering the behavior that manifests that knowledge.See also: Logic machines in fiction and List of fictional computers Knowledge representation and reasoning (KR², KR&R) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can utilize to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets. Examples of knowledge representation formalisms include semantic nets, systems architecture, frames, rules, and ontologies. Examples of automated reasoning engines include inference engines, theorem provers, and classifiers. The KR conference series was established to share ideas and progress on this challenging field. The earliest work in computerized knowledge representation was focused on general problem solvers such as the General Problem Solver (GPS) system developed by Allen Newell and Herbert A. Simon in 1959. These systems featured data structures for planning and decomposition. The system would begin with a goal. It would then decompose that goal into sub-goals and then set out to construct strategies that could accomplish each subgoal. In these early days of AI, general search algorithms such as A* were also developed. However, the amorphous problem definitions for systems such as GPS meant that they worked only for very constrained toy domains (e.g. the 'blocks world'). In order to tackle non-toy problems, AI researchers such as Ed Feigenbaum and Frederick Hayes-Roth realized that it was necessary to focus systems on more constrained problems. It was the failure of these efforts that led to the cognitive revolution in psychology and to the phase of AI focused on knowledge representation that resulted in expert systems in the 1970s and 80s, production systems, frame languages, etc. Rather than general problem solvers, AI changed its focus to expert systems that could match human competence on a specific task, such as medical diagnosis. Expert systems gave us the terminology still in use today where AI systems are divided into a Knowledge Base with facts about the world and rules and an inference engine that applies the rules to the knowledge base in order to answer questions and solve problems. In these early systems the knowledge base tended to be a fairly flat structure, essentially assertions about the values of variables used by the rules. In addition to expert systems, other researchers developed the concept of frame-based languages in the mid-1980s. A frame is similar to an object class: It is an abstract description of a category describing things in the world, problems, and potential solutions. Frames were originally used on systems geared toward human interaction, e.g. understanding natural language and the social settings in which various default expectations such as ordering food in a restaurant narrow the search space and allow the system to choose appropriate responses to dynamic situations. It was not long before the frame communities and the rule-based researchers realized that there was synergy between their approaches. Frames were good for representing the real world, described as classes, subclasses, slots (data values) with various constraints on possible values. Rules were good for representing and utilizing complex logic such as the process to make a medical diagnosis. Integrated systems were developed that combined Frames and Rules. One of the most powerful and well known was the 1983 Knowledge Engineering Environment (KEE) from Intellicorp. KEE had a complete rule engine with forward and backward chaining. It also had a complete frame based knowledge base with triggers, slots (data values), inheritance, and message passing. Although message passing originated in the object-oriented community rather than AI it was quickly embraced by AI researchers as well in environments such as KEE and in the operating systems for Lisp machines from Symbolics, Xerox, and Texas Instruments.

[ "Machine learning", "Data mining", "Artificial intelligence", "Conceptual graph", "conceptual graphs", "SNePS", "Ramification problem", "Frame language" ]
Parent Topic
Child Topic
    No Parent Topic