language-icon Old Web
English
Sign In

Countercurrent chromatography

Countercurrent chromatography (CCC, also counter-current chromatography) is a form of liquid–liquid chromatography that uses a liquid stationary phase that is held in place by centrifugal force and is used to separate, identify, and quantify the chemical components of a mixture. In its broadest sense, countercurrent chromatography encompasses a collection of related liquid chromatography techniques that employ two immiscible liquid phases without a solid support. The two liquid phases come in contact with each other as at least one phase is pumped through a column, a hollow tube or a series of chambers connected with channels, which contains both phases. The resulting dynamic mixing and settling action allows the components to be separated by their respective solubilities in the two phases. A wide variety of two-phase solvent systems consisting of at least two immiscible liquids may be employed to provide the proper selectivity for the desired separation. Countercurrent chromatography (CCC, also counter-current chromatography) is a form of liquid–liquid chromatography that uses a liquid stationary phase that is held in place by centrifugal force and is used to separate, identify, and quantify the chemical components of a mixture. In its broadest sense, countercurrent chromatography encompasses a collection of related liquid chromatography techniques that employ two immiscible liquid phases without a solid support. The two liquid phases come in contact with each other as at least one phase is pumped through a column, a hollow tube or a series of chambers connected with channels, which contains both phases. The resulting dynamic mixing and settling action allows the components to be separated by their respective solubilities in the two phases. A wide variety of two-phase solvent systems consisting of at least two immiscible liquids may be employed to provide the proper selectivity for the desired separation. Some types of countercurrent chromatography, such as dual flow CCC, feature a true countercurrent process where the two immiscible phases flow past each other and exit at opposite ends of the column. More often, however, one liquid acts as the stationary phase and is retained in the column while the mobile phase is pumped through it. The liquid stationary phase is held in place by gravity or by centrifugal force. An example of a gravity method is called droplet counter current chromatography (DCCC). There are two modes by which the stationary phase is retained by centrifugal force: hydrostatic and hydrodynamic. In the hydrostatic method, the column is rotated about a central axis. Hydrostatic instruments are marketed under the name centrifugal partition chromatography (CPC). Hydrodynamic instruments are often marketed as high-speed or high-performance countercurrent chromatography (HSCCC and HPCCC respectively) instruments which rely on the Archimedes' screw force in a helical coil to retain the stationary phase in the column. The components of a CCC system are similar to most liquid chromatography configurations, such as high-performance liquid chromatography. One or more pumps deliver the phases to the column which is the CCC instrument itself. Samples are introduced into the column through a sample loop filled with an automated or manual syringe. The outflow is monitored with various detectors such as ultraviolet–visible spectroscopy or mass spectrometry. The operation of the pumps, CCC instrument, sample injection, and detection may be controlled manually or with a microprocessor. The predecessor of modern countercurrent chromatography theory and practice was countercurrent distribution (CCD). The theory of CCD was described in the 1930s by Randall and Longtin. Archer Martin and Richard Laurence Millington Synge developed the methodology further during the 1940s. Finally, Lyman C. Craig introduced the Craig countercurrent distribution apparatus in 1944 which made CCD practical for laboratory work. CCD was used to separate a wide variety of useful compounds for several decades. Standard column chromatography consists of a solid stationary phase and a liquid mobile phase, while gas chromatography (GC) uses a solid or liquid stationary phase on a solid support and a gaseous mobile phase. By contrast, in liquid-liquid chromatography, both the mobile and stationary phases are liquid. The contrast is, however not as stark as it first appears. In reversed-phase chromatography, for example, the stationary phase can be regarded as a liquid which is immobilized by chemical bonding to a micro-porous silica solid support. In countercurrent chromatography centrifugal or gravitational forces immobilize the stationary liquid layer. By eliminating solid supports, permanent adsorption of the analyte onto the column is avoided, and a high recovery of the analyte can be achieved. The countercurrent chromatography instrument is easily switched between normal phase chromatography and reversed-phase chromatography simply by changing the mobile and stationary phases. With column chromatography, the separation potential is limited by the commercially available stationary phase media and its particular characteristics. Nearly any pair of immiscible solutions can be used in countercurrent chromatography provided that the stationary phase can be successfully retained. Solvent costs are also generally lower than for high-performance liquid chromatography (HPLC). In comparison to column chromatography, flows and total solvent usage can in most countercurrent chromatography separations may be reduced by half and even up to a tenth. Also, the cost of purchasing and disposing of stationary phase media is eliminated. Another advantage of countercurrent chromatography is that experiments conducted in the laboratory can be scaled to industrial volumes. When gas chromatography or HPLC is carried out with large volumes, resolution is lost due to issues with surface-to-volume ratios and flow dynamics; this is avoided when both phases are liquid. The CCC separation process can be thought of as occurring in three stages: mixing, settling, and separation of the two phases (although they often occur continuously). Vigorous mixing of the phases is critical in order to maximize the interfacial area between them and enhance mass transfer. The analyte will distribute between the phases according to its partition coefficient which is also called the distribution coefficient, distribution constant, or partition ratio and is represented by P, K, D, Kc, or KD. The partition coefficient for an analyte in a particular biphasic solvent system is independent of the volume of the instrument, flow rate, stationary phase retention volume ratio and the g-force required to immobilize the stationary phase. The degree of stationary phase retention is a crucial parameter. Common factors that influence stationary phase retention are flow rate, solvent composition of the biphasic solvent system, and the g-force. The stationary phase retention is represented by the stationary phase volume retention ratio (Sf) which is the volume of the stationary phase divided by the total volume of the instrument. The settling time is a property of the solvent system and the sample matrix, both of which greatly influence stationary phase retention. To most process chemists, the term 'countercurrent' implies two immiscible liquids moving in opposing directions, as typically occurs in large centrifugal extractor units. With the exception of dual flow (see below) CCC, most countercurrent chromatography modes of operation have a stationary phase and a mobile phase. Even in this situation, countercurrent flows occur within the instrument column. Several researchers have proposed renaming both CCC & CPC to liquid-liquid chromatography, but others feel the term 'countercurrent' itself is a misnomer. Unlike column chromatography and high-performance liquid chromatography, countercurrent chromatography operators can inject large volumes relative to column volume. Typically 5 to 10% of coil volume can be injected. In some cases this can be increased to as high as 15 to 20% of the coil volume. Typically, most modern commercial CCC and CPC can inject 5 to 40 g per liter capacity. The range is so large, even for a specific instrument, let alone all instrument options, as the type of target, matrix and available biphasic solvent vary so much. Approximately 10 g per liter would be a more typical value, that the majority of applications could use as a base value.

[ "Gas chromatography", "High-performance liquid chromatography", "Solvent", "Column chromatography", "Radial chromatography", "Aqueous normal-phase chromatography", "Centrifugal partition chromatography", "High pressure gas chromatography", "Dibasic potassium phosphate" ]
Parent Topic
Child Topic
    No Parent Topic