language-icon Old Web
English
Sign In

Light dark matter

In astronomy and cosmology, light dark matter are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter. The Lee-Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to ≈ 2 {displaystyle approx 2} GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order ≈ m 2 / M 4 {displaystyle approx m^{2}/M^{4}} , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out (i.e. stop interacting) much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than ∼ 2 {displaystyle sim 2} GeV the WIMP relic density would overclose the universe. In astronomy and cosmology, light dark matter are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter. The Lee-Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to ≈ 2 {displaystyle approx 2} GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order ≈ m 2 / M 4 {displaystyle approx m^{2}/M^{4}} , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out (i.e. stop interacting) much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than ∼ 2 {displaystyle sim 2} GeV the WIMP relic density would overclose the universe. Some of the few loopholes allowing one to avoid the Lee-Weinberg bound without introducing new forces below the electroweak scale have been ruled out by accelerator experiments (i.e. CERN, Tevatron), and in decays of B mesons. A viable way of building light dark matter models is thus by postulating new light bosons. This increases the annihilation cross section and reduces the coupling of dark matter particles to the Standard Model making them consistent with accelerator experiments. In recent years, light dark matter has become popular due in part to the many benefits of the theory. Sub-GeV dark matter has been used to explain the positron excess in the galactic center observed by INTEGRAL, excess gamma rays from the galactic center and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments.

[ "Hot dark matter", "Scalar field dark matter" ]
Parent Topic
Child Topic
    No Parent Topic