language-icon Old Web
English
Sign In

Ethylene glycol

Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic compound with the formula (CH2OH)2. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, sweet-tasting, viscous liquid. Ethylene glycol is toxic. Household pets are especially susceptible to ethylene glycol poisoning from vehicle antifreeze leaks. Ethylene glycol (IUPAC name: ethane-1,2-diol) is an organic compound with the formula (CH2OH)2. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, sweet-tasting, viscous liquid. Ethylene glycol is toxic. Household pets are especially susceptible to ethylene glycol poisoning from vehicle antifreeze leaks. Ethylene glycol is produced from ethylene (ethene), via the intermediate ethylene oxide. Ethylene oxide reacts with water to produce ethylene glycol according to the chemical equation: This reaction can be catalyzed by either acids or bases, or can occur at neutral pH under elevated temperatures. The highest yields of ethylene glycol occur at acidic or neutral pH with a large excess of water. Under these conditions, ethylene glycol yields of 90% can be achieved. The major byproducts are the oligomers diethylene glycol, triethylene glycol, and tetraethylene glycol. The separation of these oligomers and water is energy-intensive. About 6.7 million tonnes are produced annually. A higher selectivity is achieved by use of Shell's OMEGA process. In the OMEGA process, the ethylene oxide is first converted with carbon dioxide (CO2) to ethylene carbonate. This ring is then hydrolyzed with a base catalyst in a second step to produce mono-ethylene glycol in 98% selectivity. The carbon dioxide is released in this step again and can be fed back into the process circuit. The carbon dioxide comes in part from the ethylene oxide production, where a part of the ethylene is completely oxidized. Ethylene glycol is produced from carbon monoxide in countries with large coal reserves and less stringent environmental regulations. The oxidative carbonylation of methanol to dimethyl oxalate provides a promising approach to the production of C1-based ethylene glycol. Dimethyl oxalate can be converted into ethylene glycol in high yields (94.7%) by hydrogenation with a copper catalyst: Methanol is recycled. Therefore, only carbon monoxide, hydrogen, and oxygen are consumed. One plant with a production capacity of 200 000 tons ethylene glycol per year is in Inner Mongolia, a second plant in China with a capacity of 250 000 tons per year was scheduled for 2012 in the province of Henan. As of 2015, four plants in China with a capacity of 200 000 t/a each were operating with at least 17 more to follow. The caterpillar of the Greater wax moth, Galleria mellonella, has gut bacteria with the ability to degrade polyethylene (PE) into ethylene glycol. According to most sources, French chemist Charles-Adolphe Wurtz (1817–1884) first prepared ethylene glycol in 1856. He first treated 'ethylene iodide' (C2H4I2) with silver acetate and then hydrolyzed the resultant 'ethylene diacetate' with potassium hydroxide. Wurtz named his new compound 'glycol' because it shared qualities with both ethyl alcohol (with one hydroxyl group) and glycerin (with three hydroxyl groups). In 1859, Wurtz prepared ethylene glycol via the hydration of ethylene oxide. There appears to have been no commercial manufacture or application of ethylene glycol prior to World War I, when it was synthesized from ethylene dichloride in Germany and used as a substitute for glycerol in the explosives industry. In the United States, semicommercial production of ethylene glycol via ethylene chlorohydrin started in 1917. The first large-scale commercial glycol plant was erected in 1925 at South Charleston, West Virginia, by Carbide and Carbon Chemicals Co. (now Union Carbide Corp.). By 1929, ethylene glycol was being used by almost all dynamite manufacturers. In 1937, Carbide started up the first plant based on Lefort's process for vapor-phase oxidation of ethylene to ethylene oxide. Carbide maintained a monopoly on the direct oxidation process until 1953, when the Scientific Design process was commercialized and offered for licenses.

[ "Chemical engineering", "Organic chemistry", "Inorganic chemistry", "Polymer chemistry", "Diethylene glycol", "Dimethyl oxalate", "Ethylene glycol monophenyl ether", "Ethylene glycol monomethyl ether", "Glycol formation" ]
Parent Topic
Child Topic
    No Parent Topic