language-icon Old Web
English
Sign In

Rapid eye movement sleep

Rapid eye movement sleep (REM sleep or REMS) is a unique phase of sleep in mammals and birds, distinguishable by random/rapid movement of the eyes, accompanied with low muscle tone throughout the body, and the propensity of the sleeper to dream vividly. Rapid eye movement sleep (REM sleep or REMS) is a unique phase of sleep in mammals and birds, distinguishable by random/rapid movement of the eyes, accompanied with low muscle tone throughout the body, and the propensity of the sleeper to dream vividly. The REM phase is also known as paradoxical sleep (PS) and sometimes desynchronized sleep because of physiological similarities to waking states, including rapid, low-voltage desynchronized brain waves. Electrical and chemical activity regulating this phase seems to originate in the brain stem and is characterized most notably by an abundance of the neurotransmitter acetylcholine, combined with a nearly complete absence of monoamine neurotransmitters histamine, serotonin, and norepinephrine. REM sleep is physiologically different from the other phases of sleep, which are collectively referred to as non-REM sleep (NREM sleep, NREMS, synchronized sleep). REM and non-REM sleep alternate within one sleep cycle, which lasts about 90 minutes in adult humans. As sleep cycles continue, they shift towards a higher proportion of REM sleep. The transition to REM sleep brings marked physical changes, beginning with electrical bursts called PGO waves originating in the brain stem. Organisms in REM sleep suspend central homeostasis, allowing large fluctuations in respiration, thermoregulation, and circulation which do not occur in any other modes of sleeping or waking. The body abruptly loses muscle tone, a state known as REM atonia. Professor Nathaniel Kleitman and his student Eugene Aserinsky defined rapid eye movement and linked it to dreams in 1953. REM sleep was further described by researchers including William Dement and Michel Jouvet. Many experiments have involved awakening test subjects whenever they begin to enter the REM phase, thereby producing a state known as REM deprivation. Subjects allowed to sleep normally again usually experience a modest REM rebound. Techniques of neurosurgery, chemical injection, electroencephalography, positron emission tomography, and reports of dreamers upon waking, have all been used to study this phase of sleep. REM sleep is 'paradoxical' because of its similarities to wakefulness. Although the body is paralyzed, the brain acts somewhat awake, with cerebral neurons firing with the same overall intensity as in wakefulness. Electroencephalography during REM deep sleep reveal fast, low amplitude, desynchronized neural oscillation (brainwaves) that resemble the pattern seen during wakefulness which differ from the slow δ (delta) waves pattern of NREM deep sleep. An important element of this contrast is the θ (theta) rhythm in the hippocampus that show 40–60 Hz gamma waves, in the cortex, as it does in waking. The cortical and thalamic neurons in the waking and REM sleeping brain are more depolarized (fire more readily) than in the NREM deep sleeping brain. During REM sleep, electrical connectivity among different parts of the brain manifests differently than during wakefulness. Frontal and posterior areas are less coherent in most frequencies, a fact which has been cited in relation to the chaotic experience of dreaming. However, the posterior areas are more coherent with each other; as are the right and left hemispheres of the brain, especially during lucid dreams. Brain energy use in REM sleep, as measured by oxygen and glucose metabolism, equals or exceeds energy use in waking. The rate in non-REM sleep is 11 – 40% lower. Neural activity during REM sleep seems to originate in the brain stem, especially the pontine tegmentum and locus coeruleus. REM sleep is punctuated and immediately preceded by PGO (ponto-geniculo-occipital) waves, bursts of electrical activity originating in the brain stem. (PGO waves have long been measured directly in cats but not in humans because of constraints on experimentation; however comparable effects have been observed in humans during 'phasic' events which occur during REM sleep, and the existence of similar PGO waves is thus inferred.) These waves occur in clusters about every 6 seconds for 1–2 minutes during the transition from deep to paradoxical sleep. They exhibit their highest amplitude upon moving into the visual cortex and are a cause of the 'rapid eye movements' in paradoxical sleep. Other muscles may also contract under the influence of these waves. Research in the 1990s using positron emission tomography (PET) confirmed the role of the brain stem and suggested that, within the forebrain, the limbic and paralimbic systems showed more activation than other areas. The areas activated during REM sleep are approximately inverse to those activated during non-REM sleep and display greater activity than in quiet waking. The 'anterior paralimbic REM activation area' (APRA) includes areas linked with emotion, memory, fear and sex, and may thus relate to the experience of dreaming during REMS. More recent PET research has indicated that the distribution of brain activity during REM sleep varies in correspondence with the type of activity seen in the prior period of wakefulness.

[ "Eye movement", "Electroencephalography", "Diabetes mellitus", "Sleep in non-human animals", "sommeil paradoxal", "Pedunculopontine tegmentum", "Butoctamide", "Violent dreams", "Butoctamide hydrogen succinate" ]
Parent Topic
Child Topic
    No Parent Topic