language-icon Old Web
English
Sign In

Hydrogen peroxide

Hydrogen peroxide is a chemical compound with the formula H2O2. In its pure form, it is a very pale blue, clear liquid, slightly more viscous than water. Hydrogen peroxide is the simplest peroxide (a compound with an oxygen–oxygen single bond). It is used as an oxidizer, bleaching agent and antiseptic. Concentrated hydrogen peroxide, or 'high-test peroxide', is a reactive oxygen species and has been used as a propellant in rocketry. Its chemistry is dominated by the nature of its unstable peroxide bond. Hydrogen peroxide is unstable and slowly decomposes in the presence of light. Because of its instability, hydrogen peroxide is typically stored with a stabilizer in a weakly acidic solution. Hydrogen peroxide is found in biological systems including the human body. Enzymes that use or decompose hydrogen peroxide are classified as peroxidases. The boiling point of H2O2 has been extrapolated as being 150.2 °C, approximately 50 °C higher than water. In practice, hydrogen peroxide will undergo potentially explosive thermal decomposition if heated to this temperature. It may be safely distilled at lower temperatures under reduced pressure. In aqueous solutions hydrogen peroxide differs from the pure substance due to the effects of hydrogen bonding between water and hydrogen peroxide molecules. Hydrogen peroxide and water form a eutectic mixture, exhibiting freezing-point depression; pure water has a freezing point of 0 °C and pure hydrogen peroxide of −0.43 °C. The boiling point of the same mixtures is also depressed in relation with the mean of both boiling points (125.1 °C). It occurs at 114 °C. This boiling point is 14 °C greater than that of pure water and 36.2 °C less than that of pure hydrogen peroxide. Hydrogen peroxide (H2O2) is a nonplanar molecule as shown by Paul-Antoine Giguère in 1950 using infrared spectroscopy, with (twisted) C2 symmetry. Although the O−O bond is a single bond, the molecule has a relatively high rotational barrier of 2460 cm−1 (29.45 kJ/mol); for comparison, the rotational barrier for ethane is 12.5 kJ/mol. The increased barrier is ascribed to repulsion between the lone pairs of the adjacent oxygen atoms and results in hydrogen peroxide displaying atropisomerism. The molecular structures of gaseous and crystalline H2O2 are significantly different. This difference is attributed to the effects of hydrogen bonding, which is absent in the gaseous state. Crystals of H2O2 are tetragonal with the space group D44P4121. Hydrogen peroxide has several structural analogues with Hm−X−X−Hn bonding arrangements (water also shown for comparison). It has the highest (theoretical) boiling point of this series (X = O, N, S). Its melting point is also fairly high, being comparable to that of hydrazine and water, with only hydroxylamine crystallising significantly more readily, indicative of particularly strong hydrogen bonding. Diphosphane and hydrogen disulfide exhibit only weak hydrogen bonding and have little chemical similarity to hydrogen peroxide. All of these analogues are thermodynamically unstable. Structurally, the analogues all adopt similar skewed structures, due to repulsion between adjacent lone pairs. Alexander von Humboldt synthesized one of the first synthetic peroxides, barium peroxide, in 1799 as a by-product of his attempts to decompose air.

[ "Biochemistry", "Organic chemistry", "Inorganic chemistry", "Peroxy acid", "Tooth Sensitivity", "Plasma steriliser", "Benzidine hydrochloride", "Vaporized hydrogen peroxide" ]
Parent Topic
Child Topic
    No Parent Topic