language-icon Old Web
English
Sign In

Critical band

In audiology and psychoacoustics the concept of critical bands, introduced by Harvey Fletcher in 1933 and refined in 1940, describes the frequency bandwidth of the 'auditory filter' created by the cochlea, the sense organ of hearing within the inner ear. Roughly, the critical band is the band of audio frequencies within which a second tone will interfere with the perception of the first tone by auditory masking.To get a true representation of the auditory filters in one subject, many psychoacoustic tuning curves need to be calculated with the signal at different frequencies. For each psychoacoustic tuning curve being measured, at least five but preferably between thirteen and fifteen thresholds must be calculated, with different notch widths. Also a large number of thresholds need to be calculated because the auditory filters are asymmetrical, so thresholds should also be measured with the notch asymmetric to the frequency of the signal. Because of the many measurements needed, the amount of time needed to find the shape of a person's auditory filters is very long. To reduce the amount of time needed, the ascending method can be used when finding the masked thresholds. If the ascending method is used to calculate the threshold the time needed to calculate the shape of the filter is reduced dramatically, as it takes around two minutes to calculate the threshold. This is because the threshold is recorded when the subject first hears the tone, instead of when they respond to a certain stimulus level a certain percentage of the time. In audiology and psychoacoustics the concept of critical bands, introduced by Harvey Fletcher in 1933 and refined in 1940, describes the frequency bandwidth of the 'auditory filter' created by the cochlea, the sense organ of hearing within the inner ear. Roughly, the critical band is the band of audio frequencies within which a second tone will interfere with the perception of the first tone by auditory masking. Psychophysiologically, beating and auditory roughness sensations can be linked to the inability of the auditory frequency-analysis mechanism to resolve inputs whose frequency difference is smaller than the critical bandwidth and to the resulting irregular 'tickling' of the mechanical system (basilar membrane) that resonates in response to such inputs. Critical bands are also closely related to auditory masking phenomena – reduced audibility of a sound signal when in the presence of a second signal of higher intensity within the same critical band. Masking phenomena have wide implications, ranging from a complex relationship between loudness (perceptual frame of reference) and intensity (physical frame of reference) to sound compression algorithms. Filters are used in many aspects of audiology and psychoacoustics including the peripheral auditory system. A filter is a device that boosts certain frequencies and attenuates others. In particular, a band-pass filter allows a range of frequencies within the bandwidth to pass through while stopping those outside the cut-off frequencies. The shape and organization of the basilar membrane means that different frequencies resonate particularly strongly at different points along the membrane. This leads to a tonotopic organisation of the sensitivity to frequency ranges along the membrane, which can be modeled as being an array of overlapping band-pass filters known as 'auditory filters'. The auditory filters are associated with points along the basilar membrane and determine the frequency selectivity of the cochlea, and therefore the listener's discrimination between different sounds.They are non-linear, level-dependent and the bandwidth decreases from the base to apex of the cochlea as the tuning on the basilar membrane changes from high to low frequency. The bandwidth of the auditory filter is called the critical bandwidth, as first suggested by Fletcher (1940). If a signal and masker are presented simultaneously then only the masker frequencies falling within the critical bandwidth contribute to masking of the signal. The larger the critical bandwidth the lower the signal-to-noise ratio (SNR) and the more the signal is masked. Another concept associated with the auditory filter is the equivalent rectangular bandwidth (ERB). The ERB shows the relationship between the auditory filter, frequency, and the critical bandwidth. An ERB passes the same amount of energy as the auditory filter it corresponds to and shows how it changes with input frequency. At low sound levels, the ERB is approximated by the following equation according to Glasberg and Moore:

[ "Perception", "Masking (art)", "Acoustics", "Speech recognition", "Neuroscience" ]
Parent Topic
Child Topic
    No Parent Topic