language-icon Old Web
English
Sign In

Rise time

In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics or digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used. For applications in control theory, according to Levine (1996, p. 158), rise time is defined as 'the time required for the response to rise from x% to y% of its final value', with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. According to Orwiler (1969, p. 22), the term 'rise time' applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time. In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics or digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used. For applications in control theory, according to Levine (1996, p. 158), rise time is defined as 'the time required for the response to rise from x% to y% of its final value', with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. According to Orwiler (1969, p. 22), the term 'rise time' applies to either positive or negative step response, even if a displayed negative excursion is popularly termed fall time. Rise time is an analog parameter of fundamental importance in high speed electronics, since it is a measure of the ability of a circuit to respond to fast input signals. There have been many efforts to reduce the rise times of circuits, generators, and data measuring and transmission equipment. These reductions tend to stem from research on faster electron devices and from techniques of reduction in stray circuit parameters (mainly capacitances and inductances). For applications outside the realm of high speed electronics, long (compared to the attainable state of the art) rise times are sometimes desirable: examples are the dimming of a light, where a longer rise-time results, amongst other things, in a longer life for the bulb, or in the control of analog signals by digital ones by means of an analog switch, where a longer rise time means lower capacitive feedthrough, and thus lower coupling noise to the controlled analog signal lines. For a given system output, its rise time depend both on the rise time of input signal and on the characteristics of the system. For example, rise time values in a resistive circuit are primarily due to stray capacitance and inductance. Since every circuit has not only resistance, but also capacitance and inductance, a delay in voltage and/or current at the load is apparent until the steady state is reached. In a pure RC circuit, the output risetime (10% to 90%) is approximately equal to 2.2 RC. Other definitions of rise time, apart from the one given by the Federal Standard 1037C (1997, p. R-22) and its slight generalization given by Levine (1996, p. 158), are occasionally used: these alternative definitions differ from the standard not only for the reference levels considered. For example, the time interval graphically corresponding to the intercept points of the tangent drawn through the 50% point of the step function response is occasionally used. Another definition, introduced by Elmore (1948, p. 57), uses concepts from statistics and probability theory. Considering a step response V(t), he redefines the delay time tD as the first moment of its first derivative V′(t), i.e. Finally, he defines the rise time tr by using the second moment

[ "Pulse (signal processing)", "Electronic engineering", "Electrical engineering", "Optics", "Voltage", "Fall time", "Rise time setting", "pulse rise time" ]
Parent Topic
Child Topic
    No Parent Topic