language-icon Old Web
English
Sign In

Creosote

Creosote is a category of carbonaceous chemicals formed by the distillation of various tars and pyrolysis of plant-derived material, such as wood or fossil fuel. They are typically used as preservatives or antiseptics.Polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, benzenes, toluenes, ethylbenzenes, and xylenes (BTEX)Phenols, cresols, xylenols, and naphtholsPyridines, quinolines, benzoquinolines, acridines, indolines, and carbazolesBenzothiophenesDibenzofuransAniline, aminonaphthalenes, diphenyl amines, aminofluorenes, and aminophenanthrenes, cyano-PAHs, benz acridines Creosote is a category of carbonaceous chemicals formed by the distillation of various tars and pyrolysis of plant-derived material, such as wood or fossil fuel. They are typically used as preservatives or antiseptics. Some creosote types were used historically as a treatment for components of seagoing and outdoor wood structures to prevent rot (e.g., bridgework and railroad ties, see image). Samples may be commonly found inside chimney flues, where the coal or wood burns under variable conditions, producing soot and tarry smoke. Creosotes are the principal chemicals responsible for the stability, scent, and flavor characteristic of smoked meat; the name is derived from Greek κρέας (kreas), meaning 'meat', and σωτήρ (sōtēr), meaning 'preserver'. The two main kinds recognized in industry are coal-tar creosote and wood-tar creosote. The coal-tar variety, having stronger and more toxic properties, has chiefly been used as a preservative for wood; coal-tar creosote was also formerly used as an escharotic, to burn malignant skin tissue, and in dentistry, to prevent necrosis, before its carcinogenic properties became known. The wood-tar variety has been used for meat preservation, ship treatment, and such medical purposes as an anaesthetic, antiseptic, astringent, expectorant, and laxative, though these have mostly been replaced by modern formulations. Varieties of creosote have also been made from both oil shale and petroleum, and are known as oil-tar creosote when derived from oil tar, and as water-gas-tar creosote when derived from the tar of water gas. Creosote also has been made from pre-coal formations such as lignite, yielding lignite-tar creosote, and peat, yielding peat-tar creosote. The term creosote has a broad range of definitions depending on the origin of the coal tar oil and end use of the material.With respect to wood preservatives, the United States Environmental Protection Agency (EPA) considers the term creosote to mean a pesticide for use as a wood preservative meeting the American Wood Protection Association (AWPA) Standards P1/P13 and P2. The AWPA Standards require that creosote 'shall be a pure coal tar product derived entirely from tar produced by the carbonization of bituminous coal.'Currently, all creosote treated wood products—foundation and marine piling, lumber, posts, railroad crossties, timbers, and utility poles—are manufactured using this type of wood preservative. The manufacturing process can only be a pressure process under the supervision of a licensed applicator certified by the State Departments of Agriculture. No brush-on, spray, or non-pressure uses of creosote are allowed, as specified by the EPA approved label for the use of creosote.The use of creosote according to the AWPA Standards does not allow for mixing with other types of 'creosote type' materials—such as lignite-tar creosote, oil-tar creosote, peat-tar creosote, water-gas-tar creosote, or wood-tar creosote. The AWPA Standard P3 does however, allow blending of a high-boiling petroleum oil meeting the AWPA Standard P4. The information that follows describing the other various types of creosote materials and its uses should be considered as primarily being of only historical value. This history is important, because it traces the origin of these different materials used during the 19th and early 20th centuries. Furthermore, it must be considered that these other types of creosotes – lignite-tar, wood-tar, water-gas-tar, etc. – are not currently being manufactured and have either been replaced with more economical materials, or replaced by products that are more efficacious. For some part of their history, coal-tar creosote and wood-tar creosote were thought to have been equivalent substances—albeit of distinct origins—accounting for their common name; the two were determined only later to be chemically different. All types of creosote are composed of phenol derivatives and share some quantity of monosubstituted phenols, but these are not the only active element of creosote. For their useful effects, coal-tar creosote relies on the presence of naphthalenes and anthracenes, while wood-tar creosote relies on the presence of methyl ethers of phenol. Otherwise, either type of tar would dissolve in water. Creosote was first discovered in its wood-tar form in 1832, by Carl Reichenbach, when he found it both in the tar and in pyroligneous acids obtained by a dry distillation of beechwood. Because pyroligneous acid was known as an antiseptic and meat preservative, Reichenbach conducted experiments by dipping meat in a diluted solution of distilled creosote. He found that the meat was dried without undergoing putrefaction and had attained a smoky flavor. This led him to reason that creosote was the antiseptic component contained in smoke, and he further argued that the creosote he had found in wood tar was also in coal tar, as well as amber tar and animal tar, in the same abundance as in wood tar. Soon afterward, in 1834, Friedrich Ferdinand Runge discovered carbolic acid in coal-tar, and Auguste Laurent obtained it from phenylhydrate, which was soon determined to be the same compound. There was no clear view on the relationship between carbolic acid and creosote; Runge described it as having similar caustic and antiseptic properties, but noted that it was different, in that it was an acid and formed salts. Nonetheless, Reichenbach argued that creosote was also the active element, as it was in pyroligneous acid. Despite evidence to the contrary, his view held sway with most chemists, and it became commonly accepted wisdom that creosote, carbolic acid, and phenylhydrate were identical substances, with different degrees of purity.

[ "Environmental chemistry", "Organic chemistry", "Pulp and paper industry", "Waste management", "Beechwood Creosote", "Wood creosote" ]
Parent Topic
Child Topic
    No Parent Topic