language-icon Old Web
English
Sign In

Non-volatile memory

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retrieve stored information even after having been power cycled. In contrast, volatile memory needs constant power in order to retain data. Examples of non-volatile memory include read-only memory, flash memory, ferroelectric RAM, most types of magnetic computer storage devices (e.g. hard disk drives, floppy disks, and magnetic tape), optical discs, and early computer storage methods such as paper tape and punched cards. Non-volatile memory can be classified as traditional non-volatile disk storage, or storage in non-volatile memory chips (Flash memory Storage) – EEPROM, SSD, NAND, etc. Non-volatile memory is typically used for the task of secondary storage, or long-term persistent storage. The most widely used form of primary storage today is a volatile form of random access memory (RAM), meaning that when the computer is shut down, anything contained in RAM is lost. However, most forms of non-volatile memory have limitations that make them unsuitable for use as primary storage. Typically, non-volatile memory costs more, provides lower performance, or has a limited lifetime compared to volatile random access memory. Non-volatile data storage can be categorized into electrically addressed systems (read-only memory) and mechanically addressed systems (hard disks, optical disc, magnetic tape, holographic memory, and such). Generally speaking, electrically addressed systems are expensive, have limited capacity, but are fast, whereas mechanically addressed systems are more cost effective per bit, but are slower. Electrically addressed semiconductor non-volatile memories can be categorized according to their write mechanism. Mask ROMs are factory programmable only, and typically used for large-volume products which are not required to be updated after manufacture. Programmable read-only memory can be altered after manufacture, but require a special programmer and usually cannot be programmed while in the target system. The programming is permanent and further changes require replacement of the device. Data is stored by physically altering (burning) storage sites in the device. An EPROM is an erasable ROM that can be changed more than once. However, writing new data to an EPROM requires a special programmer circuit. EPROMs have a quartz window that allows them to be erased with ultraviolet light, but the whole device is cleared at one time. A one-time programmable (OTP) device may be implemented using an EPROM chip without the quartz window; this is less costly to manufacture. An electrically erasable programmable read-only memory EEPROM uses voltage to erase memory. These erasable memory devices require a significant amount of time to erase data and to write new data; they are not usually configured to be programmed by the processor of the target system. Data is stored by use of floating-gate transistors which require special operating voltages to trap or release electric charge on an insulated control gate to store information. Flash memory is a solid-state chip that maintains stored data without any external power source. It is a close relative to the EEPROM; it differs in that erase operations must be done on a block basis and capacity is substantially larger than that of an EEPROM. Flash memory devices use two different technologies—NOR and NAND—to map data. NOR flash provides high-speed random access, reading and writing data in specific memory locations; it can retrieve as little as a single byte. NAND flash reads and writes sequentially at high speed, handling data in blocks, however it is slower on read when compared to NOR. NAND flash reads faster than it writes, quickly transferring whole pages of data. Less expensive than NOR flash at high densities, NAND technology offers higher capacity for the same-size silicon. Ferroelectric RAM (FeRAM, F-RAM or FRAM) is a random-access memory similar in construction to DRAM both use a capacitor and transistor but instead of using a simple dielectric layer the capacitor, a F-RAM cell contains a thin ferroelectric film of lead zirconate titanate , commonly referred to as PZT. The Zr/Ti atoms in the PZT change polarity in an electric field, thereby producing a binary switch. Due to the PZT crystal maintaining polarity, F-RAM retains its data memory when power is shut off or interrupted.

[ "Computer hardware", "Electronic engineering", "Operating system", "Electrical engineering", "Optoelectronics", "3D XPoint", "Volatile memory", "UIMID", "Charge trap flash", "NVDIMM" ]
Parent Topic
Child Topic
    No Parent Topic