language-icon Old Web
English
Sign In

Magnetometer

A magnetometer is a device that measures magnetism—the direction, strength, or relative change of a magnetic field at a particular location. The measurement of the magnetization of a magnetic material (like a ferromagnet) is an example. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field. The first magnetometer capable of measuring the absolute magnetic intensity was invented by Carl Friedrich Gauss in 1833 and notable developments in the 19th century included the Hall effect, which is still widely used. Magnetometers are widely used for measuring the Earth's magnetic field, and in geophysical surveys, to detect magnetic anomalies of various types. In an aircraft's attitude and heading reference system, they are commonly used as a heading reference. Magnetometers are also used in the military to detect submarines. Consequently, some countries, such as the United States, Canada and Australia, classify the more sensitive magnetometers as military technology, and control their distribution. Magnetometers can be used as metal detectors: they can detect only magnetic (ferrous) metals, but can detect such metals at a much larger depth than conventional metal detectors; they are capable of detecting large objects, such as cars, at tens of metres, while a metal detector's range is rarely more than 2 metres. In recent years, magnetometers have been miniaturized to the extent that they can be incorporated in integrated circuits at very low cost and are finding increasing use as miniaturized compasses (MEMS magnetic field sensor). Magnetic fields are vector quantities characterized by both strength and direction. The strength of a magnetic field is measured in units of tesla in the SI units, and in gauss in the cgs system of units. 10,000 gauss are equal to one tesla. Measurements of the Earth's magnetic field are often quoted in units of nanotesla (nT), also called a gamma. The Earth's magnetic field can vary from 20,000 to 80,000 nT depending on location, fluctuations in the Earth's magnetic field are on the order of 100 nT, and magnetic field variations due to magnetic anomalies can be in the picotesla (pT) range. Gaussmeters and teslameters are magnetometers that measure in units of gauss or tesla, respectively. In some contexts, magnetometer is the term used for an instrument that measures fields of less than 1 millitesla (mT) and gaussmeter is used for those measuring greater than 1 mT. There are two basic types of magnetometer measurement. Vector magnetometers measure the vector components of a magnetic field. Total field magnetometers or scalar magnetometers measure the magnitude of the vector magnetic field. Magnetometers used to study the Earth's magnetic field may express the vector components of the field in terms of declination (the angle between the horizontal component of the field vector and magnetic north) and the inclination (the angle between the field vector and the horizontal surface). Absolute magnetometers measure the absolute magnitude or vector magnetic field, using an internal calibration or known physical constants of the magnetic sensor. Relative magnetometers measure magnitude or vector magnetic field relative to a fixed but uncalibrated baseline. Also called variometers, relative magnetometers are used to measure variations in magnetic field.

[ "Magnetic field", "Proton magnetometer", "flux transformer", "Dip circle", "atomic magnetometer", "Intermagnet" ]
Parent Topic
Child Topic
    No Parent Topic