language-icon Old Web
English
Sign In

Augmented reality

Augmented reality (AR) is an interactive experience of a real-world environment where the objects that reside in the real-world are enhanced by computer-generated perceptual information, sometimes across multiple sensory modalities, including visual, auditory, haptic, somatosensory and olfactory. The overlaid sensory information can be constructive (i.e. additive to the natural environment), or destructive (i.e. masking of the natural environment). This experience is seamlessly interwoven with the physical world such that it is perceived as an immersive aspect of the real environment. In this way, augmented reality alters one's ongoing perception of a real-world environment, whereas virtual reality completely replaces the user's real-world environment with a simulated one. Augmented reality is related to two largely synonymous terms: mixed reality and computer-mediated reality. The primary value of augmented reality is the manner in which components of the digital world blend into a person's perception of the real world, not as a simple display of data, but through the integration of immersive sensations, which are perceived as natural parts of an environment. The earliest functional AR systems that provided immersive mixed reality experiences for users were invented in the early 1990s, starting with the Virtual Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992. Commercial augmented reality experiences were first introduced in entertainment and gaming businesses. Subsequently, augmented reality applications have spanned commercial industries such as education, communications, medicine, and entertainment. In education, content may be accessed by scanning or viewing an image with a mobile device or by using markerless AR techniques. An example relevant to the construction industry is an AR helmet for construction workers which displays information about construction sites. Augmented reality is used to enhance natural environments or situations and offer perceptually enriched experiences. With the help of advanced AR technologies (e.g. adding computer vision, incorporating AR cameras into smartphone applications and object recognition) the information about the surrounding real world of the user becomes interactive and digitally manipulated. Information about the environment and its objects is overlaid on the real world. This information can be virtual or real, e.g. seeing other real sensed or measured information such as electromagnetic radio waves overlaid in exact alignment with where they actually are in space. Augmented reality also has a lot of potential in the gathering and sharing of tacit knowledge. Augmentation techniques are typically performed in real time and in semantic contexts with environmental elements. Immersive perceptual information is sometimes combined with supplemental information like scores over a live video feed of a sporting event. This combines the benefits of both augmented reality technology and heads up display technology (HUD). In Virtual Reality (VR), the users’ perception of reality is completely based on virtual information. In Augmented Reality (AR) the user is provided with additional computer generated information that enhances their perception of reality. For example, in architecture, VR can be used to create a walk-though simulation of the inside of a new building; and AR can be used to show a building's structures and systems super-imposed on a real-life view. Hardware components for augmented reality are: a processor, display, sensors and input devices. Modern mobile computing devices like smartphones and tablet computers contain these elements, which often include a camera and Microelectromechanical systems (MEMS) sensors such as an accelerometer, GPS, and solid state compass, making them suitable AR platforms.There are two technologies used in augmented reality: diffractive waveguides and reflective waveguides. Various technologies are used in augmented reality rendering, including optical projection systems, monitors, handheld devices, and display systems, which are worn on the human body. A head-mounted display (HMD) is a display device worn on the forehead, such as a harness or helmet-mounted. HMDs place images of both the physical world and virtual objects over the user's field of view. Modern HMDs often employ sensors for six degrees of freedom monitoring that allow the system to align virtual information to the physical world and adjust accordingly with the user's head movements. HMDs can provide VR users with mobile and collaborative experiences. Specific providers, such as uSens and Gestigon, include gesture controls for full virtual immersion. In January 2015, Meta launched a project led by Horizons Ventures, Tim Draper, Alexis Ohanian, BOE Optoelectronics and Garry Tan. On 17 February 2016, Meta announced their second-generation product at TED, Meta 2. The Meta 2 head-mounted display headset uses a sensory array for hand interactions and positional tracking, visual field view of 90 degrees (diagonal), and resolution display of 2560 x 1440 (20 pixels per degree), which is considered the largest field of view (FOV) currently available.

[ "Computer vision", "Multimedia", "Human–computer interaction", "Artificial intelligence", "ar system", "Augmented learning", "Mixed reality", "handheld augmented reality", "3D user interaction" ]
Parent Topic
Child Topic
    No Parent Topic