language-icon Old Web
English
Sign In

Structures

Structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals. Abstract structures include data structures in computer science and musical form. Types of structure include a hierarchy (a cascade of one-to-many relationships), a network featuring many-to-many links, or a lattice featuring connections between components that are neighbors in space. Structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals. Abstract structures include data structures in computer science and musical form. Types of structure include a hierarchy (a cascade of one-to-many relationships), a network featuring many-to-many links, or a lattice featuring connections between components that are neighbors in space. Buildings, aircraft, skeletons, anthills, beaver dams and salt domes are all examples of load-bearing structures. The results of construction are divided into buildings and non-building structures, and make up the infrastructure of a human society. Built structures are broadly divided by their varying design approaches and standards, into categories including building structures, architectural structures, civil engineering structures and mechanical structures. The effects of loads on physical structures are determined through structural analysis, which is one of the tasks of structural engineering. The structural elements can be classified as one-dimensional (ropes, struts, beams, arches), two-dimensional (membranes, plates, slab, shells, vaults), or three-dimensional (solid masses).:2 The latter was the main option available to early structures such as Chichen Itza. A one-dimensional element has one dimension much larger than the other two, so the other dimensions can be neglected in calculations; however, the ratio of the smaller dimensions and the composition can determine the flexural and compressive stiffness of the element. Two-dimensional elements with a thin third dimension have little of either but can resist biaxial traction.:2–3 The structure elements are combined in structural systems. The majority of everyday load-bearing structures are section-active structures like frames, which are primarily composed of one-dimensional (bending) structures. Other types are Vector-active structures such as trusses, surface-active structures such as shells and folded plates, form-active structures such as cable or membrane structures, and hybrid structures.:134–136 Load-bearing biological structures such as bones, teeth, shells, and tendons derive their strength from a multilevel hierarchy of structures employing biominerals and proteins, at the bottom of which are collagen fibrils. In biology, structures exist at all levels of organization, ranging hierarchically from the atomic and molecular to the cellular, tissue, organ, organismic, population and ecosystem level. Usually, a higher-level structure is composed of multiple copies of a lower-level structure. Structural biology is concerned with the biomolecular structure of macromolecules, particularly proteins and nucleic acids. The function of these molecules is determined by their shape as well as their composition, and their structure has multiple levels. Protein structure has a four-level hierarchy. The primary structure is the sequence of amino acids that make it up. It has a peptide backbone made up of a repeated sequence of a nitrogen and two carbon atoms. The secondary structure consists of repeated patterns determined by hydrogen bonding. The two basic types are the α-helix and the β-pleated sheet. The tertiary structure is a back and forth bending of the polypeptide chain, and the quaternary structure is the way that tertiary units come together and interact. Chemical structure refers to both molecular geometry and electronic structure. The structure can be represented by a variety of diagrams called structural formulas. Lewis structures use a dot notation to represent the valence electrons for an atom; these are the electrons that determine the role of the atom in chemical reactions.:71–72 Bonds between atoms can be represented by lines with one line for each pair of electrons that is shared. In a simplified version of such a diagram, called a skeletal formula, only carbon-carbon bonds and functional groups are shown. Atoms in a crystal have a structure that involves repetition of a basic unit called a unit cell. The atoms can be modeled as points on a lattice, and one can explore the effect of symmetry operations that include rotations about a point, reflections about a symmetry planes, and translations (movements of all the points by the same amount). Each crystal has a finite group, called the space group, of such operations that map it onto itself; there are 230 possible space groups.:125–126 By Neumann's law, the symmetry of a crystal determines what physical properties, including piezoelectricity and ferromagnetism, the crystal can have.:34–36,91–92,168–169

[ "Acoustics", "Aesthetics" ]
Parent Topic
Child Topic
    No Parent Topic