language-icon Old Web
English
Sign In

Artificial Sweetener

A sugar substitute is a food additive that provides a sweet taste like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar alcohols such as erythritol, xylitol, and sorbitol are derived from sugars. In 2017, sucralose was the most common sugar substitute used in the manufacture of foods and beverages; it had 30% of the global market, which was projected to be valued at $2.8 billion by 2021. A sugar substitute is a food additive that provides a sweet taste like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar alcohols such as erythritol, xylitol, and sorbitol are derived from sugars. In 2017, sucralose was the most common sugar substitute used in the manufacture of foods and beverages; it had 30% of the global market, which was projected to be valued at $2.8 billion by 2021. In 1969, cyclamate was banned for sale in the US by the Food and Drug Administration. As of 2018, there is no strong evidence that non-sugar sweeteners are either unsafe or result in improved health outcomes. When these sweeteners are provided for restaurant customers to add to beverages such as tea and coffee, they are provided in small colored paper packets (see image); in North America, the colors are typically blue for aspartame, pink for saccharin (US) or cyclamate (Canada), yellow for sucralose, orange for monk fruit extract, and green for stevia. These sweeteners are also a fundamental ingredient in diet drinks to sweeten them without adding calories. High-intensity sweeteners – one type of sugar substitute – are compounds with many times the sweetness of sucrose, common table sugar. As a result, much less sweetener is required and energy contribution is often negligible. The sensation of sweetness caused by these compounds (the 'sweetness profile') is sometimes notably different from sucrose, so they are often used in complex mixtures that achieve the most intense sweet sensation. If the sucrose (or other sugar) that is replaced has contributed to the texture of the product, then a bulking agent is often also needed. This may be seen in soft drinks or sweet teas that are labeled as 'diet' or 'light' that contain artificial sweeteners and often have notably different mouthfeel, or in table sugar replacements that mix maltodextrins with an intense sweetener to achieve satisfactory texture sensation. In the United States, six high-intensity sugar substitutes have been approved for use: aspartame, sucralose, neotame, acesulfame potassium (Ace-K), saccharin, and advantame. Food additives must be approved by the FDA, and sweeteners must be proven as safe via submission by a manufacturer of a GRAS document. The conclusions about GRAS are based on a detailed review of a large body of information, including rigorous toxicological and clinical studies. GRAS notices exist for two plant-based, high-intensity sweeteners: steviol glycosides obtained from stevia leaves (Stevia rebaudiana) and extracts from Siraitia grosvenorii, also called luo han guo or monk fruit. Cyclamates are used outside the United States, but are prohibited from manufacturing as a sweetener within the United States. The majority of sugar substitutes approved for food use are artificially synthesized compounds. However, some bulk plant-derived sugar substitutes are known, including sorbitol, xylitol and lactitol. As it is not commercially viable to extract these products from fruits and vegetables, they are produced by catalytic hydrogenation of the appropriate reducing sugar. For example, xylose is converted to xylitol, lactose to lactitol, and glucose to sorbitol. Sorbitol, xylitol and lactitol are examples of sugar alcohols (also known as polyols). These are, in general, less sweet than sucrose but have similar bulk properties and can be used in a wide range of food products. Sometimes the sweetness profile is fine-tuned by mixing with high-intensity sweeteners. Acesulfame potassium (Ace-K) is 200 times sweeter than sucrose (common sugar), as sweet as aspartame, about two thirds as sweet as saccharin, and one third as sweet as sucralose. Like saccharin, it has a slightly bitter aftertaste, especially at high concentrations. Kraft Foods has patented the use of sodium ferulate to mask acesulfame's aftertaste. Acesulfame potassium is often blended with other sweeteners (usually aspartame or sucralose), which give a more sucrose-like taste, whereby each sweetener masks the other's aftertaste and also exhibits a synergistic effect in which the blend is sweeter than its components.

[ "Food science", "Diabetes mellitus", "Chromatography", "Biochemistry", "Sugar", "Aspartame Acesulfame" ]
Parent Topic
Child Topic
    No Parent Topic