language-icon Old Web
English
Sign In

Graph factorization

In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is an edge coloring with k colors. A 2-factor is a collection of cycles that spans all vertices of the graph. In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is an edge coloring with k colors. A 2-factor is a collection of cycles that spans all vertices of the graph. If a graph is 1-factorable (ie, has a 1-factorization), then it has to be a regular graph. However, not all regular graphs are 1-factorable. A k-regular graph is 1-factorable if it has chromatic index k; examples of such graphs include: However, there are also k-regular graphs that have chromatic index k + 1, and these graphs are not 1-factorable; examples of such graphs include: A 1-factorization of a complete graph corresponds to pairings in a round-robin tournament. The 1-factorization of complete graphs is a special case of Baranyai's theorem concerning the 1-factorization of complete hypergraphs. One method for constructing a 1-factorization of a complete graph on an even number of vertices involves placing all but one of the vertices on a circle, forming a regular polygon, with the remaining vertex at the center of the circle. With this arrangement of vertices, one way of constructing a 1-factor of the graph is to choose an edge e from the center to a single polygon vertex together with all possible edges that lie on lines perpendicular to e. The 1-factors that can be constructed in this way form a 1-factorization of the graph. The number of distinct 1-factorizations of K2, K4, K6, K8, ... is 1, 1, 6, 6240, 1225566720, 252282619805368320, 98758655816833727741338583040, ... OEIS: A000438. Let G be a k-regular graph with 2n nodes. If k is sufficiently large, it is known that G has to be 1-factorable: The 1-factorization conjecture is a long-standing conjecture that states that k ≈ n is sufficient. In precise terms, the conjecture is: The overfull conjecture implies the 1-factorization conjecture.

[ "Line graph", "Degree (graph theory)", "Voltage graph", "Graph power", "Reconstruction conjecture", "Induced subgraph isomorphism problem", "Toroidal graph", "Barnette's conjecture", "Edge contraction" ]
Parent Topic
Child Topic
    No Parent Topic