language-icon Old Web
English
Sign In

Tetracoordinate

In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals. In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals. For molecules and polyatomic ions the coordination number of an atom is determined by simply counting the other atoms to which it is bonded (by either single or multiple bonds). For example, − has Cr3+ as its central cation, which has a coordination number of 6 and is described as hexacoordinate. However the solid-state structures of crystals often have less clearly defined bonds, and in these cases a count of neighboring atoms is employed. The simplest method is one used in materials science. The usual value of the coordination number for a given structure refers to an atom in the interior of a crystal lattice with neighbors in all directions. In contexts where crystal surfaces are important, such as materials science and heterogeneous catalysis, the number of neighbors of an interior atom is the bulk coordination number, while the number of surface neighbors of an atom at the surface of the crystal is the surface coordination number. In chemistry, coordination number (C.N.), defined originally in 1893 by Alfred Werner, is the total number of neighbors of a central atom in a molecule or ion. Although a carbon atom has four chemical bonds in most stable molecules, the coordination number of each carbon is four in methane (CH4), three in ethylene (H2C=CH2, each C is bonded to 2H + 1C = 3 atoms), and two in acetylene (HC≡CH). In effect we count the first bond (or sigma bond) to each neighboring atom, but not the other bonds (pi bonds). In coordination complexes, only the first or sigma bond between each ligand and the central atom counts, but not any pi bonds to the same ligands. In tungsten hexacarbonyl, W(CO)6, the coordination number of tungsten (W) is counted as six although pi as well as sigma bonding is important in such metal carbonyls. The most common coordination number for d-block transition metal complexes is 6, with an octahedral geometry. The observed range is 2 (e.g., AuI in Ph3PAuCl) to 9 (e.g., ReVII in 2−). Metals in the f-block (the lanthanoids and actinoids) can accommodate higher coordination number due to their greater ionic radii and availability of more orbitals for bonding. Coordination numbers of 8 to 12 are commonly observed for f-block elements. For example, with bidentate nitrate ions as ligands, CeIV and ThIV form the 12-coordinate ions 2− (ceric ammonium nitrate) and 2−. When the surrounding ligands are much smaller than the central atom, even higher coordination numbers may be possible. One computational chemistry study predicted a particularly stable PbHe2+15 ion composed of a central lead ion coordinated with no fewer than 15 helium atoms. At the opposite extreme, steric shielding can give rise to unusually low coordination numbers. An extremely rare instance of a metal adopting a coordination number of 1 occurs in the terphenyl-based arylthallium(I) complex 2,6-Tipp2C6H3Tl, where Tipp is the 2,4,6-triisopropylphenyl group. For π-electron ligands such as the cyclopentadienide ion −, alkenes and the cyclooctatetraenide ion 2−, the number of atoms in the π-electron system that bind to the central atom is termed the hapticity. In ferrocene the hapticity, η, of each cyclopentadienide anion is five, Fe(η5-C5H5)2. There are various ways of assigning the contribution made to the coordination number of the central iron atom by each cyclopentadienide ligand. The contribution could be assigned as one since there is one ligand, or as five since there are five neighbouring atoms, or as three since there are three electron pairs involved. Normally the count of electron pairs is taken. In order to determine the coordination number of an atom in a crystal, the crystal structure has first to be determined. This is achieved using X-ray, neutron or electron diffraction. Once the positions of the atoms within the unit cell of the crystal are known the coordination number of an atom can be determined. For molecular solids or coordination complexes the units of the polyatomic species can be detected and a count of the bonds can be performed. Solids with lattice structures which includes metals and many inorganic solids can have regular structures where coordinating atoms are all at the same distance and they form the vertices of a coordination polyhedron. However, there are also many such solids where the structures are irregular. In materials science, the bulk coordination number of a given atom in the interior of a crystal lattice is the number of nearest neighbours to a given atom. For an atom at a surface of a crystal, the surface coordination number is always less than the bulk coordination number. The surface coordination number is dependent on the Miller indices of the surface. In a body-centered cubic (BCC) crystal, the bulk coordination number is 8, whereas, for the (100) surface, the surface coordination number is 4. α-Aluminium has a regular cubic close packed structure, fcc, where each aluminium atom has 12 nearest neighbors, 6 in the same plane and 3 above and below and the coordination polyhedron is a cuboctahedron. α-Iron has a body centered cubic structure where each iron atom has 8 nearest neighbors situated at the corners of a cube.

[ "Ligand", "Planar", "Atom", "Carbon" ]
Parent Topic
Child Topic
    No Parent Topic