language-icon Old Web
English
Sign In

Carboxylic acid

A carboxylic acid is an organic compound that contains a carboxyl group (C(=O)OH). The general formula of a carboxylic acid is R–COOH, with R referring to the rest of the (possibly quite large) molecule. Carboxylic acids occur widely. Important examples include the amino acids (which make up proteins) and acetic acid (which is part of vinegar). Deprotonation of a carboxyl group gives a carboxylate anion. Important carboxylate salts are soaps. Carboxylic acids are commonly identified by their trivial names. They often have the suffix -ic acid. IUPAC-recommended names also exist; in this system, carboxylic acids have an -oic acid suffix. For example, butyric acid (C3H7CO2H) is butanoic acid by IUPAC guidelines. For nomenclature of complex molecules containing a carboxylic acid, the carboxyl can be considered position one of the parent chain even if there are other substituents, for example, 3-chloropropanoic acid. Alternately, it can be named as a 'carboxy' or 'carboxylic acid' substituent on another parent structure, for example, 2-carboxyfuran. The carboxylate anion (R–COO− or RCO2−) of a carboxylic acid is usually named with the suffix -ate, in keeping with the general pattern of -ic acid and -ate for a conjugate acid and its conjugate base, respectively. For example, the conjugate base of acetic acid is acetate. Carboxylic acids are polar. Because they are both hydrogen-bond acceptors (the carbonyl –C=O) and hydrogen-bond donors (the hydroxyl –OH), they also participate in hydrogen bonding. Together the hydroxyl and carbonyl group forms the functional group carboxyl. Carboxylic acids usually exist as dimers in nonpolar media due to their tendency to 'self-associate'. Smaller carboxylic acids (1 to 5 carbons) are soluble in water, whereas higher carboxylic acids have limited solubility due to the increasing hydrophobic nature of the alkyl chain. These longer chain acids tend to be rather soluble in less-polar solvents such as ethers and alcohols. Even hydrophobic carboxylic acids react aqueous sodium hydroxide to give water-soluble sodium salts. For example, enathic acid has a small solubility in water (0.2 g/L), but its sodium salt is very soluble in water: Carboxylic acids tend to have higher boiling points than water, not only because of their increased surface area, but also because of their tendency to form stabilised dimers through hydrogen bonds. For boiling to occur, either the dimer bonds must be broken or the entire dimer arrangement must be vaporised, both of which increase the enthalpy of vaporization requirements significantly. Carboxylic acids are Brønsted–Lowry acids because they are proton (H+) donors. They are the most common type of organic acid. Carboxylic acids are typically weak acids, meaning that they only partially dissociate into H3O+ cations and RCOO− anions in neutral aqueous solution. For example, at room temperature, in a 1-molar solution of acetic acid, only 0.4% of the acid are dissociated. Electron-withdrawing substituents, such as -CF3 group, give stronger acids (the pKa of formic acid is 3.75 whereas trifluoroacetic acid, with a trifluoromethyl substituent, has a pKa of 0.23). Electron-donating substituents give weaker acids (the pKa of formic acid is 3.75 whereas acetic acid, with a methyl substituent, has a pKa of 4.76) Deprotonation of carboxylic acids gives carboxylate anions; these are resonance stabilized, because the negative charge is delocalized over the two oxygen atoms, increasing the stability of the anion. Each of the carbon–oxygen bonds in the carboxylate anion has a partial double-bond character. The carbonyl carbon's partial positive charge is also weakened by the -1/2 negative charges on the 2 oxygen atoms.

[ "Biochemistry", "Organic chemistry", "Inorganic chemistry", "Polymer chemistry", "Carboxylic ester", "Mumm rearrangement", "Perfluorinated carboxylic acid", "Carboxylic acid anion", "Carboxylic acid synthesis" ]
Parent Topic
Child Topic
    No Parent Topic