language-icon Old Web
English
Sign In

IMPATT diode

An IMPATT diode (IMPact ionization Avalanche Transit-Time diode) is a form of high-power semiconductor diode used in high-frequency microwave electronics devices. They have negative resistance and are used as oscillators and amplifiers at microwave frequencies. They operate at frequencies of about 3 and 100 GHz, or higher. The main advantage is their high-power capability; single IMPATT diodes can produce continuous microwave outputs of up to 3 kilowatts, and pulsed outputs of much higher power. These diodes are used in a variety of applications from low-power radar systems to proximity alarms. A major drawback of IMPATT diodes is the high level of phase noise they generate. This results from the statistical nature of the avalanche process. An IMPATT diode (IMPact ionization Avalanche Transit-Time diode) is a form of high-power semiconductor diode used in high-frequency microwave electronics devices. They have negative resistance and are used as oscillators and amplifiers at microwave frequencies. They operate at frequencies of about 3 and 100 GHz, or higher. The main advantage is their high-power capability; single IMPATT diodes can produce continuous microwave outputs of up to 3 kilowatts, and pulsed outputs of much higher power. These diodes are used in a variety of applications from low-power radar systems to proximity alarms. A major drawback of IMPATT diodes is the high level of phase noise they generate. This results from the statistical nature of the avalanche process. The IMPATT diode family includes many different junctions and metal semiconductor devices. The first IMPATT oscillation was obtained from a simple silicon p–n junction diode biased into a reverse avalanche break down and mounted in a microwave cavity. Because of the strong dependence of the ionization coefficient on the electric field, most of the electron–hole pairs are generated in the high field region. The generated electron immediately moves into the N region, while the generated holes drift across the P region. The time required for the hole to reach the contact constitutes the transit time delay. The original proposal for a microwave device of the IMPATT type was made by Read. The Read diode consists of two regions (i) The Avalanche region (a region with relatively high doping and high field) in which avalanche multiplication occurs and (ii) the drift region (a region with essentially intrinsic doping and constant field) in which the generated holes drift towards the contact. A similar device can be built with the configuration in which electrons generated from the avalanche multiplication drift through the intrinsic region. An IMPATT diode generally is mounted in a microwave package. The diode is mounted with its low–field region close to a silicon heat sink so that the heat generated at the diode junction can be readily dissipated. Similar microwave packages are used to house other microwave devices. The IMPATT diode operates over a narrow frequency band, and diode internal dimensions must correlate with the desired operating frequency. An IMPATT oscillator can be tuned by adjusting the resonant frequency of the coupled circuit, and also by varying the current in the diode; this can be used for frequency modulation. If a free electron with a sufficient energy strikes a silicon atom, it can break the covalent bond of silicon and liberate an electron from the covalent bond. If the electron liberated gains energy by being in an electric field and liberates other electrons from other covalent bonds then this process can cascade very quickly into a chain reaction, producing a large number of electrons and a large current flow. This phenomenon is called avalanche breakdown.

[ "Oscillation", "Microwave", "Diode", "Power (physics)" ]
Parent Topic
Child Topic
    No Parent Topic