language-icon Old Web
English
Sign In

Task analysis

Task analysis is the analysis of how a task is accomplished, including a detailed description of both manual and mental activities, task and element durations, task frequency, task allocation, task complexity, environmental conditions, necessary clothing and equipment, and any other unique factors involved in or required for one or more people to perform a given task. Task analysis is the analysis of how a task is accomplished, including a detailed description of both manual and mental activities, task and element durations, task frequency, task allocation, task complexity, environmental conditions, necessary clothing and equipment, and any other unique factors involved in or required for one or more people to perform a given task. Information from a task analysis can then be used for many purposes, such as personnel selection and training, tool or equipment design, procedure design (e.g., design of checklists, or decision support systems) and automation. Though distinct, task analysis is related to user analysis. The term 'task' is often used interchangeably with activity or process. Task analysis often results in a hierarchical representation of what steps it takes to perform a task for which there is a goal and for which there is some lowest-level 'action' or interaction among humans and/or machines: this is known as hierarchical task analysis. Tasks may be identified and defined at multiple levels of abstraction as required to support the purpose of the analysis. A critical task analysis, for example, is an analysis of human performance requirements which, if not accomplished in accordance with system requirements, will likely have adverse effects on cost, system reliability, efficiency, effectiveness, or safety. Task analysis is often performed by human factors and ergonomics professionals. Task analysis may be of manual tasks, such as bricklaying, and be analyzed as time and motion studies using concepts from industrial engineering. Cognitive task analysis is applied to modern work environments such as supervisory control where little physical work occurs, but the tasks are more related to situation assessment, decision making, and response planning and execution. Task analysis is also used in education. It is a model that is applied to classroom tasks to discover which curriculum components are well matched to the capabilities of students with learning disabilities and which task modification might be necessary. It discovers which tasks a person hasn't mastered, and the information processing demands of tasks that are easy or problematic. In behavior modification, it is a breakdown of a complex behavioral sequence into steps. This often serves as the basis for chaining. The results of task analysis are often represented in task models, which clearly indicate the relations among the various tasks, An example notation used to specify task models is ConcurTaskTrees (by Fabio Paternò), which is also supported by tools that are freely available. If task analysis is likened to a set of instructions on how to navigate from Point A to Point B, then Work domain analysis (WDA) is like having a map of the terrain that includes Point A and Point B. WDA is broader and focuses on the environmental constraints and opportunities for behavior, as in Gibsonian ecological psychology and ecological interface design (Vicente, 1999; Bennett & Flach, 2011, p. 61) Since the 1980s, a major change in technical documentation has been to emphasize the tasks performed with a system rather than documenting the system itself. In software documentation particularly, long printed technical manuals that exhaustively describe every function of the software are being replaced by online help organized into tasks. This is part of the new emphasis on usability and user-centered design rather than system/software/product design. This task orientation in technical documentation began with publishing guidelines issued by IBM in the late 1980s. Later IBM studies led to John Carroll's theory of minimalism in the 1990s.

[ "Human–computer interaction", "Artificial intelligence", "Management", "task", "task based design", "Function (engineering)", "PIMEX", "NGOMSL", "operator function model" ]
Parent Topic
Child Topic
    No Parent Topic