language-icon Old Web
English
Sign In

Spin structure

In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry. In geometry and in field theory, mathematicians ask whether or not a given oriented Riemannian manifold (M,g) admits spinors. One method for dealing with this problem is to require that M has a spin structure. This is not always possible since there is potentially a topological obstruction to the existence of spin structures. Spin structures will exist if and only if the second Stiefel–Whitney class w2(M) ∈ H2(M, Z2) of M vanishes. Furthermore, if w2(M) = 0, then the set of the isomorphism classes of spin structures on M is acted upon freely and transitively by H1(M, Z2) . As the manifold M is assumed to be oriented, the first Stiefel–Whitney class w1(M) ∈ H1(M, Z2) of M vanishes too. (The Stiefel–Whitney classes wi(M) ∈ Hi(M, Z2) of a manifold M are defined to be the Stiefel–Whitney classes of its tangent bundle TM.) The bundle of spinors πS: S → M over M is then the complex vector bundle associated with the corresponding principal bundle πP: P → M of spin frames over M and the spin representation of its structure group Spin(n) on the space of spinors Δn. The bundle S is called the spinor bundle for a given spin structure on M. A precise definition of spin structure on manifold was possible only after the notion of fiber bundle had been introduced; André Haefliger (1956) found the topological obstruction to the existence of a spin structure on an orientable Riemannian manifold and Max Karoubi (1968) extended this result to the non-orientable pseudo-Riemannian case. A spin structure on an orientable Riemannian manifold (M,g) is an equivariant lift of the oriented orthonormal frame bundle FSO(M) → M with respect to the double covering ρ: Spin(n) → SO(n). In other words, a pair (P,FP) is a spin structure on the principal bundle π: FSO(M) → M when The principal bundle πP: P → M is also called the bundle of spin frames over M. Two spin structures (P1, FP1) and (P2, FP2) on the same oriented Riemannian manifold (M,g) are called 'equivalent' if there exists a Spin(n)-equivariant map f: P1 → P2 such that Of course, in this case F P 1 {displaystyle F_{mathbf {P} _{1}}} and F P 2 {displaystyle F_{mathbf {P} _{2}}} are two equivalent double coverings of the oriented orthonormal frame SO(n)-bundle FSO(M) → M of the given Riemannian manifold (M,g).

[ "Spin-½" ]
Parent Topic
Child Topic
    No Parent Topic