language-icon Old Web
English
Sign In

CYP4F3

4051170716ENSG00000186529ENSMUSG00000024055Q08477n/aNM_000896NM_001199208NM_001199209NM_001369696NM_130882NP_000887NP_001186137NP_001186138NP_001356625n/aLeukotriene-B(4) omega-hydroxylase 2 is an enzyme that in humans is encoded by the CYP4F3 gene. CYP4F3 encodes two distinct enzymes, CYP4F3A and CYP4F3B, which originate from the alternative splicing of a single pre-mRNA precursor molecule; selection of either isoform is tissue-specific with CYP3F3A being expressed mostly in leukocytes and CYP4F3B mostly in the liver. Leukotriene-B(4) omega-hydroxylase 2 is an enzyme that in humans is encoded by the CYP4F3 gene. CYP4F3 encodes two distinct enzymes, CYP4F3A and CYP4F3B, which originate from the alternative splicing of a single pre-mRNA precursor molecule; selection of either isoform is tissue-specific with CYP3F3A being expressed mostly in leukocytes and CYP4F3B mostly in the liver. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, fatty acids and other lipids. CYP4F3 actually encodes two splice-variants, CYP4F3A and CYP4F3B, of the cytochrome P450 superfamily of enzymes. The gene is part of a cluster of cytochrome P450 genes on chromosome 19. Another member of this family, CYP4F8, is approximately 18 kb away. Both variants localize on the endoplasmic reticulum and metabolize leukotriene B4 and very likely 5-hydroxyeicosatetraenoic acid, 5-oxo-eicosatetraenoic acid, and 12-hydroxyeicosatetraenoic acid by an omega oxidation reaction, i.e. by adding a hydroxyl residue to their terminal (i.e. C-20) carbon. This addition starts the process of inactivating and degrading all of these well-known mediators of inflammation and/or allery. CYP3FA is the major enzyme accomplishing these omega oxidations in leukocytes. The hydroxylation-induced inactivation of these mediators, perhaps particularly of leukotriene B4, may underlie the proposed roles of these cytochromes in dampening inflammatory responses as well as the reported associations of certain CYP4F3 single nucleotide variants (SNPs) with human Krohn's disease (SNPs are designated Rs1290617 and rs1290620 and Celiac disease (rs1290622 and rs1290625). CYP4F3A and/or CYP43B also omega oxidize arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) as well as epoxyeicosatrienoic acids (EETs) to 20-hydroxy-EETs. 20-HETE regulates blood flow, vascularization, blood pressure, and kidney tubule absorption of ions in rodents and possibly humans; it has also been proposed to be involved in regulating the growth of various types of human cancers (see 20-Hydroxyeicosatetraenoic acid#cancer). EETS have a similar set of regulatory functions but often act in a manner opposite to 20-HETE (see epoxyeicosatrienoic acid#cancer); since, however, the activities of the 20-HEETs have not been well-defined, the function of EET omega oxidation is unclear.

[ "Cytochrome P450", "Human liver", "Leukotriene B4", "Gene isoform", "Messenger RNA" ]
Parent Topic
Child Topic
    No Parent Topic