language-icon Old Web
English
Sign In

Bovine spongiform encephalopathy

Bovine spongiform encephalopathy (BSE), commonly known as mad cow disease, is a neurodegenerative disease of cattle. Symptoms include abnormal behavior, trouble walking, and weight loss. Later in the course the cow becomes unable to move. The time between infection and onset of symptoms is generally four to five years. Time from onset of symptoms to death is generally weeks to months. Spread to humans is believed to result in variant Creutzfeldt–Jakob disease (vCJD). As of 2018, a total of 231 cases of vCJD have been reported globally. BSE is thought to be due to an infection by a misfolded protein, known as a prion. Cattle are believed to have been infected by being fed meat-and-bone meal (MBM) that contained the remains of other cattle who spontaneously developed the disease or scrapie-infected sheep products. The outbreak increased throughout the United Kingdom due to the practice of feeding meat-and-bone meal to young calves of dairy cows. Cases are suspected based on symptoms and confirmed by examination of the brain. Cases are classified as classic or atypical, with the latter divided into H- and L types. It is a type of transmissible spongiform encephalopathy (TSE). Efforts to prevent the disease in the UK include not allowing any animal older than 30 months to enter either the human food or animal feed supply. In Europe all cattle over 30 months must be tested if they will become human food. In North America tissue of concern, known as specified risk material, may not be added to animal feed or pet food. About 4.4 million cows were killed during the eradication program in the UK. Four cases were reported globally in 2017, and the condition has been deemed to be nearly eradicated. In the United Kingdom, from 1986 to 2015, more than 184,000 cattle were diagnosed with the peak of new cases occurring in 1993. A few thousand additional cases have been reported in other regions of the world. It is believed that a few million cattle with the condition likely entered the food supply during the outbreak. Signs are not seen immediately in cattle, due to the disease's extremely long incubation period. Some cattle have been observed to have an abnormal gait, changes in behavior, tremors and hyper-responsiveness to certain stimuli. Hindlimb ataxia affects the animal’s gait and occurs when muscle control is lost. This results in poor balance and coordination. Behavioural changes may include aggression, anxiety relating to certain situations, nervousness, frenzy or an overall change in temperament. Some rare but previously observed signs also include persistent pacing, rubbing or licking. Additionally, nonspecific signs have also been observed which include weight loss, decreased milk production, lameness, ear infections and teeth grinding due to pain. Some animals may show a combination of these signs, while others may only be observed demonstrating one of the many reported. Once clinical signs arise, they typically get worse over the subsequent weeks and months, eventually leading to recumbency, coma and death. BSE is an infectious disease believed to be due to a misfolded protein, known as a prion. Cattle are believed to have been infected from being fed meat and bone meal (MBM) that contained the remains of other cattle who spontaneously developed the disease or scrapie-infected sheep products. The outbreak increased throughout the United Kingdom due to the practice of feeding meat-and-bone meal to young calves of dairy cows. Prions replicate by causing other normally folded proteins of the same type to take on their misfolded shape, which then go on to do the same, leading to an exponential chain reaction. Eventually, the prions aggregate into an alpha helical, beta pleated sheet, which is thought to be toxic to brain cells. The agent is not destroyed even if the beef or material containing it is cooked or heat-treated. Transmission can occur when healthy animals come in contact with tainted tissues from others with the disease. In the brain, the agent causes native cellular prion protein to deform into the misfolded state, which then goes on to deform further prion protein in an exponential cascade. This results in protein aggregates, which then form dense plaque fibers. Brain cells begin to die off in massive numbers, eventually leading to the microscopic appearance of 'holes' in the brain, degeneration of physical and mental abilities, and ultimately death.

[ "Disease", "prion protein", "Transmissible mink encephalopathy agent", "Atypical bovine spongiform encephalopathy", "Scrapie PrP", "Acquired prion disease", "Virino" ]
Parent Topic
Child Topic
    No Parent Topic