language-icon Old Web
English
Sign In

Critical micelle concentration

In colloidal and surface chemistry, the critical micelle concentration (CMC) is defined as the concentration of surfactants above which micelles form and all additional surfactants added to the system go to micelles. In colloidal and surface chemistry, the critical micelle concentration (CMC) is defined as the concentration of surfactants above which micelles form and all additional surfactants added to the system go to micelles. The CMC is an important characteristic of a surfactant. Before reaching the CMC, the surface tension changes strongly with the concentration of the surfactant. After reaching the CMC, the surface tension remains relatively constant or changes with a lower slope. The value of the CMC for a given dispersant in a given medium depends on temperature, pressure, and (sometimes strongly) on the presence and concentration of other surface active substances and electrolytes. Micelles only form above critical micelle temperature. For example, the value of CMC for sodium dodecyl sulfate in water (no other additives or salts) at 25 °C, atmospheric pressure, is 8x10−3 mol/L. With increase in concentration of surfactant there will be decrease in surface tension. Upon introduction of surfactants (or any surface active materials) into the system, they will initially partition into the interface, reducing the system free energy by: Subsequently, when the surface coverage by the surfactants increases, the surface free energy (surface tension) decreases and the surfactants start aggregating into micelles, thus again decreasing the system's free energy by decreasing the contact area of hydrophobic parts of the surfactant with water. Upon reaching CMC, any further addition of surfactants will just increase the number of micelles (in the ideal case). There are several theoretical definitions of CMC. One well-known definition is that CMC is the total concentration of surfactants under the conditions: The CMC generally depends on the method of measuring the samples, since a and b depend on the properties of the solution such as conductance and photochemical characteristics. When the degree of aggregation is monodisperse, then the CMC is not related to the method of measurement. On the other hand, when the degree of aggregation is polydisperse, then CMC is related to both the method of measurement and the dispersion. The common procedure to determine the CMC from experimental data is to look for the intersection of two straight lines traced through plots of the measured property versus the surfactant concentration. This visual data analysis method is highly subjective and can lead to very different CMC values depending on the type of representation, the quality of the data and the chosen interval around the CMC. A preferred method is the fit of the experimental data with a model of the measured property. Fit functions for properties such as electrical conductivity, surface tension, NMR chemical shifts, absorption, self-diffusion coefficients, fluorescence intensity and mean translational diffusion coefficient of fluorescent dyes in surfactant solutions have been presented. These fit functions are based on a model for the concentrations of monomeric and micellised surfactants in solution, which establishes a well-defined analytical definition of the CMC, independent from the technique. The CMC is the concentration of surfactants in the bulk at which micelles start forming. The word bulk is important because surfactants partition between the bulk and interface and CMC is independent of interface and is therefore a characteristic of the surfactant molecule. In most situations, such as surface tension measurements or conductivity measurements, the amount of surfactant at the interface is negligible compared to that in the bulk and CMC can be approximated by the total concentration.

[ "Micelle", "Trimethyltetradecylammonium bromide", "Sodium hexanoate", "Dodecyl glucoside", "Tetradecyltriphenylphosphonium bromide", "Tetradecyltrimethylammonium chloride" ]
Parent Topic
Child Topic
    No Parent Topic