language-icon Old Web
English
Sign In

Heterochromatin

Heterochromatin is a tightly packed form of DNA or condensed DNA, which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role in the expression of genes. Because it is tightly packed, it was thought to be inaccessible to polymerases and therefore not transcribed, however according to Volpe et al. (2002), and many other papers since, much of this DNA is in fact transcribed, but it is continuously turned over via RNA-induced transcriptional silencing (RITS). Recent studies with electron microscopy and OsO4 staining reveal that the dense packing is not due to the chromatin. Heterochromatin is a tightly packed form of DNA or condensed DNA, which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role in the expression of genes. Because it is tightly packed, it was thought to be inaccessible to polymerases and therefore not transcribed, however according to Volpe et al. (2002), and many other papers since, much of this DNA is in fact transcribed, but it is continuously turned over via RNA-induced transcriptional silencing (RITS). Recent studies with electron microscopy and OsO4 staining reveal that the dense packing is not due to the chromatin. Constitutive heterochromatin can affect the genes near itself (e.g. position-effect variegation). It is usually repetitive and forms structural functions such as centromeres or telomeres, in addition to acting as an attractor for other gene-expression or repression signals. Facultative heterochromatin is the result of genes that are silenced through a mechanism such as histone deacetylation or Piwi-interacting RNA (piRNA) through RNAi. It is not repetitive and shares the compact structure of constitutive heterochromatin. However, under specific developmental or environmental signaling cues, it can lose its condensed structure and become transcriptionally active. Heterochromatin has been associated with the di- and tri-methylation of H3K9 in certain portions of the genome. H3K9me3-related methyltransferases appear to have a pivotal role in modifying heterochromatin during lineage commitment at the onset of organogenesis and in maintaining lineage fidelity. Note that the informal diagram shown here may be in error as to the location of heterochromatin. An inactivated X-chromosome (a.k.a. Barr body) migrates to the nuclear membrane alone, leaving the active X and other chromosomes within the nucleoplasm (away from the membrane in general). Other heterochromatin appear as particles separate from the membrane, 'Heterochromatin appears as small, darkly staining, irregular particles scattered throughout the nucleus ...'. Chromatin is found in two varieties: euchromatin and heterochromatin. Originally, the two forms were distinguished cytologically by how intensely they stained – the euchromatin is less intense, while heterochromatin stains intensely, indicating tighter packing. Heterochromatin is usually localized to the periphery of the nucleus.Despite this early dichotomy, recent evidence in both animals and plants has suggested that there are more than two distinct heterochromatin states, and it may in fact exist in four or five 'states', each marked by different combinations of epigenetic marks. Heterochromatin mainly consists of genetically inactive satellite sequences, and many genes are repressed to various extents, although some cannot be expressed in euchromatin at all. Both centromeres and telomeres are heterochromatic, as is the Barr body of the second, inactivated X-chromosome in a female. Heterochromatin has been associated with several functions, from gene regulation to the protection of chromosome integrity; some of these roles can be attributed to the dense packing of DNA, which makes it less accessible to protein factors that usually bind DNA or its associated factors. For example, naked double-stranded DNA ends would usually be interpreted by the cell as damaged or viral DNA, triggering cell cycle arrest, DNA repair or destruction of the fragment, such as by endonucleases in bacteria. Some regions of chromatin are very densely packed with fibers that display a condition comparable to that of the chromosome at mitosis. Heterochromatin is generally clonally inherited; when a cell divides, the two daughter cells typically contain heterochromatin within the same regions of DNA, resulting in epigenetic inheritance. Variations cause heterochromatin to encroach on adjacent genes or recede from genes at the extremes of domains. Transcribable material may be repressed by being positioned (in cis) at these boundary domains. This gives rise to expression levels that vary from cell to cell, which may be demonstrated by position-effect variegation. Insulator sequences may act as a barrier in rare cases where constitutive heterochromatin and highly active genes are juxtaposed (e.g. the 5'HS4 insulator upstream of the chicken β-globin locus, and loci in two Saccharomyces spp.).

[ "Chromosome", "Chromatin", "Heterochromatic genes", "Perinucleolar region", "Tetraphocomelia", "Chromo shadow domain", "Like heterochromatin protein 1" ]
Parent Topic
Child Topic
    No Parent Topic