language-icon Old Web
English
Sign In

Super soft X-ray source

A luminous supersoft X-ray source (SSXS, or SSS) is an astronomical source that emits only low energy (i.e., soft) X-rays. Soft X-rays have energies in the 0.09 to 2.5 keV range, whereas hard X-rays are in the 1–20 keV range. SSSs emit few or no photons with energies above 1 keV, and most have effective temperatures below 100 eV. This means that the radiation they emit is highly ionizing and is readily absorbed by the interstellar medium. Most SSSs within our own galaxy are hidden by interstellar absorption in the galactic disk. They are readily evident in external galaxies, with ~10 found in the Magellanic Clouds and at least 15 seen in M31. A luminous supersoft X-ray source (SSXS, or SSS) is an astronomical source that emits only low energy (i.e., soft) X-rays. Soft X-rays have energies in the 0.09 to 2.5 keV range, whereas hard X-rays are in the 1–20 keV range. SSSs emit few or no photons with energies above 1 keV, and most have effective temperatures below 100 eV. This means that the radiation they emit is highly ionizing and is readily absorbed by the interstellar medium. Most SSSs within our own galaxy are hidden by interstellar absorption in the galactic disk. They are readily evident in external galaxies, with ~10 found in the Magellanic Clouds and at least 15 seen in M31. As of early 2005, more than 100 SSSs have been reported in ~20 external galaxies, the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and the Milky Way (MW). Those with luminosities below ~3 x 1038 erg/s are consistent with steady nuclear burning in accreting white dwarfs (WD)s or post-novae. There are a few SSS with luminosities ≥1039 erg/s. Super soft X-rays are believed to be produced by steady nuclear fusion on a white dwarf's surface of material pulled from a binary companion, the so-called close-binary supersoft source (CBSS). This requires a flow of material sufficiently high to sustain the fusion. Contrast this with the nova, where less flow causes the material to only fuse sporadically. Super soft X-ray sources can evolve into type Ia supernova, where a sudden fusion of material destroys the white dwarf, and neutron stars, through collapse. Super soft X-ray sources were first discovered by the Einstein Observatory. Further discoveries were made by ROSAT. Many different classes of objects emit supersoft X-radiation (emission dominantly below 0.5 keV). Luminous super soft X-ray sources have a characteristic blackbody temperature of a few tens of eV (~20–100 eV) and a bolometric luminosity of ~1038 erg/s (below ~ 3 x 1038 erg/s). Apparently, luminous SSXSs can have equivalent blackbody temperatures as low as ~15 eV and luminosities ranging from 1036 to 1038 erg/s. The numbers of luminous SSSs in the disks of ordinary spiral galaxies such as the MW and M31 are estimated to be on the order of 103. SSXSs have now been discovered in our galaxy and in globular cluster M3. MR Velorum (RX J0925.7-4758) is one of the rare MW super soft X-ray binaries. 'The source is heavily reddened by interstellar material, making it difficult to observe in the blue and ultraviolet.' The period determined for MR Velorum at ~4.03 d is considerably longer than that of other supersoft systems, which is usually less than a day. The CBSS model invokes steady nuclear burning on the surface of an accreting white dwarf (WD) as the generator of the prodigious super soft X-ray flux. As of 1999, eight SSXSs have orbital periods between ~4 hr and 1.35 d: RX J0019.8+2156 (MW), RX J0439.8-6809 (MW halo near LMC), RX J0513.9-6951 (LMC), RX J0527.8-6954 (LMC), RX J0537.7-7034 (LMC), CAL 83 (LMC), CAL 87 LMC), and 1E 0035.4-7230 (SMC). A symbiotic binary star is a variable binary star system in which a red giant has expanded its outer envelope and is shedding mass quickly, and another hot star (often a white dwarf) is ionizing the gas. Three symbiotic binaries as of 1999 are SSXSs: AG Dra (BB, MW), RR Tel (WD, MW), and RX J0048.4-7332 (WD, SMC).

[ "Astronomy", "Astrophysics", "Quantum mechanics", "White dwarf" ]
Parent Topic
Child Topic
    No Parent Topic