language-icon Old Web
English
Sign In

Nitrogen fixation

Nitrogen fixation is a process by which nitrogen in the air is converted into ammonia (NH3) or related nitrogenous compounds. Atmospheric nitrogen is molecular dinitrogen, a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation converts N2 into ammonia, which is metabolized by most organisms.Betulaceae: Alnus (alders)Coriariaceae: CoriariaMyricaceae:Rhamnaceae:Rosaceae:'Vol'pin and co-workers, using a non-protic Lewis acid, aluminium tribromide, were able to demonstrate the truly catalytic effect of titanium by treating dinitrogen with a mixture of titanium tetrachloride, metallic aluminium, and aluminium tribromide at 50 °C, either in the absence or in the presence of a solvent, e.g. benzene. As much as 200 mol of ammonia per mol of TiCl4 was obtained after hydrolysis.…' Nitrogen fixation is a process by which nitrogen in the air is converted into ammonia (NH3) or related nitrogenous compounds. Atmospheric nitrogen is molecular dinitrogen, a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation converts N2 into ammonia, which is metabolized by most organisms. Nitrogen fixation is essential to life because fixed inorganic nitrogen compounds are required for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acids. As part of the nitrogen cycle, it is essential for agriculture and the manufacture of fertilizer. It is also, indirectly, relevant to the manufacture of all chemical compounds that contain nitrogen, which includes explosives, most pharmaceuticals, and dyes. Nitrogen fixation is carried out naturally in the soil by a wide range of microorganisms termed diazotrophs that include bacteria such as Azotobacter, and archaea. Some nitrogen-fixing bacteria have symbiotic relationships with some plant groups, especially legumes. Looser non-symbiotic relationships between diazotrophs and plants are often referred to as associative, as seen in nitrogen fixation on rice roots. Nitrogen fixation also occurs between some termites and fungi. It also occurs naturally in the air by means of NOx production by lightning. All biological nitrogen fixation is effected by enzymes called nitrogenases. These enzymes contain iron, often with a second metal, usually molybdenum but sometimes vanadium. Nitrogen can be fixed by lightning converting nitrogen and oxygen into NO x (nitrogen oxides). NO x may react with water to make nitrous acid or nitric acid, which seeps into the soil, where it makes nitrate, which is of use to growing plants. Nitrogen in the atmosphere is highly stable and nonreactive due to there being a triple bond between atoms in the N2 molecule. Lightning produces enough energy and heat to break this bond allowing the nitrogen atoms to react with oxygen forming NOx. This itself cannot be used by plants, but as this molecule cools it reacts with more oxygen to form NO2. This molecule in turn reacts with water to produce HNO3 (nitric acid), or its ion NO3- (nitrate), which is usable by plants. Biological nitrogen fixation was discovered by the German agronomist Hermann Hellriegel and Dutch microbiologist Martinus Beijerinck. Biological nitrogen fixation (BNF) occurs when atmospheric nitrogen is converted to ammonia by an enzyme called a nitrogenase. The overall reaction for BNF is: N2 + 16ATP + 8e- + 8H+ -> 2NH3 + H2 + 16ADP + 16Pi The process is coupled to the hydrolysis of 16 equivalents of ATP and is accompanied by the co-formation of one equivalent of H2. The conversion of N2 into ammonia occurs at a metal cluster called FeMoco, an abbreviation for the iron-molybdenum cofactor. The mechanism proceeds via a series of protonation and reduction steps wherein the FeMoco active site hydrogenates the N2 substrate. In free-living diazotrophs, the nitrogenase-generated ammonia is assimilated into glutamate through the glutamine synthetase/glutamate synthase pathway. The microbial nif genes required for nitrogen fixation are widely distributed in diverse environments. Nitrogenases are rapidly degraded by oxygen. For this reason, many bacteria cease production of the enzyme in the presence of oxygen. Many nitrogen-fixing organisms exist only in anaerobic conditions, respiring to draw down oxygen levels, or binding the oxygen with a protein such as leghemoglobin.

[ "Bacteria", "Nitrogen", "Rhodopseudomonas capsulatus", "Nitrogenase", "Beijerinckia", "Rhizobium japonicum", "Genus Azotobacter" ]
Parent Topic
Child Topic
    No Parent Topic