language-icon Old Web
English
Sign In

Nanocomposite hydrogels

Nanocomposite hydrogels (NC gels) are nanomaterial-filled, hydrated, polymeric networks that exhibit higher elasticity and strength relative to traditionally made hydrogels. A range of natural and synthetic polymers are used to design nanocomposite network. By controlling the interactions between nanoparticles and polymer chains, a range of physical, chemical, and biological properties can be engineered. The combination of organic (polymer) and inorganic (clay) structure gives these hydrogels improved physical, chemical, electrical, biological, and swelling/de-swelling properties that cannot be achieved by either material alone. Inspired by flexible biological tissues, researchers incorporate carbon-based, polymeric, ceramic and/or metallic nanomaterials to give these hydrogels superior characteristics like optical properties and stimulus-sensitivity which can potentially be very helpful to medical (especially drug delivery and stem cell engineering) and mechanical fields. Nanocomposite hydrogels (NC gels) are nanomaterial-filled, hydrated, polymeric networks that exhibit higher elasticity and strength relative to traditionally made hydrogels. A range of natural and synthetic polymers are used to design nanocomposite network. By controlling the interactions between nanoparticles and polymer chains, a range of physical, chemical, and biological properties can be engineered. The combination of organic (polymer) and inorganic (clay) structure gives these hydrogels improved physical, chemical, electrical, biological, and swelling/de-swelling properties that cannot be achieved by either material alone. Inspired by flexible biological tissues, researchers incorporate carbon-based, polymeric, ceramic and/or metallic nanomaterials to give these hydrogels superior characteristics like optical properties and stimulus-sensitivity which can potentially be very helpful to medical (especially drug delivery and stem cell engineering) and mechanical fields. Nanocomposite hydrogels are not to be confused with nanogel, a nanoparticle composed of a hydrogel. The synthesis of nanocomposite hydrogels is a process that requires specific material and method. These polymers need to be made up of equally spaced out, 30 nm in diameter, clay platelets that can swell and exfoliate in the presence of water. The platelets act as cross-links to modify molecular functions to enable the hydrogels to have superior elasticity and toughness that resembles closely that of biological tissue. Using clay platelets that do not swell or exfoliate in water, using an organic cross-linker such as N,N-methylenebisacrylamide(BIS), mixing of clay and BIS, or preparing nanocomposite hydrogels in a method other than cross-link, will be unsuccessful. Despite all the specifications, the process of synthesizing nanocomposite hydrogels is simple and because of the flexible nature of the material, these hydrogels can be easily made to come in different shapes such as huge blocks, sheets, thin films, rods, hollow tubes, spheres, bellows and uneven sheets.

[ "Self-healing hydrogels", "Swelling", "Nanocomposite", "Polymer" ]
Parent Topic
Child Topic
    No Parent Topic