language-icon Old Web
English
Sign In

Visual memory

Visual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image. The experience of visual memory is also referred to as the mind's eye through which we can retrieve from our memory a mental image of original objects, places, animals or people. Visual memory is one of several cognitive systems, which are all interconnected parts that combine to form the human memory. Types of palinopsia, the persistence or recurrence of a visual image after the stimulus has been removed, is a dysfunction of visual memory. Visual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image. The experience of visual memory is also referred to as the mind's eye through which we can retrieve from our memory a mental image of original objects, places, animals or people. Visual memory is one of several cognitive systems, which are all interconnected parts that combine to form the human memory. Types of palinopsia, the persistence or recurrence of a visual image after the stimulus has been removed, is a dysfunction of visual memory. In humans, areas specialized for visual object recognition in the ventral stream have a more inferior location in the temporal cortex, whereas areas specialized for the visual-spatial location of objects in the dorsal stream have a more superior location in the parietal cortex. However, these two streams hypothesis, although useful, are a simplification of the visual system because the two streams maintain intercommunication along their entire rostral course. The posterior parietal cortex is a portion of the parietal lobe, which manipulates mental images, and integrates sensory and motor portions of the brain. A majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We therefore have to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. We can only hold in mind a minute fraction of the visual scene. These mental representations are stored in visual short-term memory. Activity in the posterior parietal cortex is tightly correlated with the limited amount of scene information that can be stored in visual short-term memory. These results suggest that the posterior parietal cortex is a key neural locus of our impoverished mental representation of the visual world. The posterior cortex might act as a capacity-limited store for the representation of the visual scene, the frontal/prefrontal cortex might be necessary for the consolidation and/or maintenance of this store, especially during extended retention intervals. There is a visual cortex in each hemisphere of the brain, much of which is located in the Occipital lobe. The left hemisphere visual cortex receives signals mainly from the right visual field and the right visual cortex mainly from the left visual field, although each cortex receives a considerable amount of information from the ipsilateral visual field as well. The visual cortex also receives information from subcortical regions, such as the lateral geniculate body, located in the thalamus. However, ample evidence indicates that object identity and location are preferentially processed in ventral (occipito-temporal) and dorsal (occipito-parietal) cortical visual streams, respectively.Comparison of rCBF during performance of the two tasks again revealed differences between the ventral and dorsal pathways.

[ "Cognition", "Visual short-term memory", "N2pc", "Doors and People", "Visual Reproduction I", "Haptic memory" ]
Parent Topic
Child Topic
    No Parent Topic