language-icon Old Web
English
Sign In

Bacterial phyla

The bacterial phyla are the major lineages, known as phyla or divisions, of the domain Bacteria. In the scientific classification established by Carl von Linné, each bacterial strain has to be assigned to a species (binary nomenclature), which is a lower level of a hierarchy of ranks. Currently, the most accepted mega-classification system is under the three-domain system, which is based on molecular phylogeny. In that system, bacteria are members of the domain Bacteria and 'phylum' is the rank below domain, since the rank 'kingdom' is disused at present in bacterial taxonomy. When bacterial nomenclature was controlled under the Botanical Code, the term division was used, but now that bacterial nomenclature (with the exception of cyanobacteria) is controlled under the Bacteriological Code, the term phylum is preferred. In this classification scheme, Bacteria is (unofficially) subdivided into 30 phyla with representatives cultured in a lab. Many major clades of bacteria that cannot currently be cultured are known solely and somewhat indirectly through metagenomics, the analysis of bulk samples from the environment. If these possible clades, candidate phyla, are included, the number of phyla is 52 or higher. Therefore, the number of major phyla has increased from 12 identifiable lineages in 1987, to 30 in 2014, or over 50 including candidate phyla. The total number has been estimated to exceed 1,000 bacterial phyla. At the base of the clade Bacteria, close to the last universal common ancestor of all living things, some scientists believe there may be a definite branching order, whereas other scientists, such as Norman Pace, believe there was a large hard polytomy, a simultaneous multiple speciation event. Traditionally, phylogeny was inferred and taxonomy established based on studies of morphology. Recently molecular phylogenetics has been used to allow better elucidation of the evolutionary relationship of species by analysing their DNA and protein sequences, for example their ribosomal DNA. The lack of easily accessible morphological features, such as those present in animals and plants, hampered early efforts of classification and resulted in erroneous, distorted and confused classification, an example of which, noted Carl Woese, is Pseudomonas whose etymology ironically matched its taxonomy, namely 'false unit'. In 1987, Carl Woese, regarded as the forerunner of the molecular phylogeny revolution, divided Eubacteria into 11 divisions based on 16S ribosomal RNA (SSU) sequences: New species have been cultured since 1987, when Woese's review paper was published, that are sufficiently different that they warrant a new phylum. Most of these are thermophiles and often also chemolithoautotrophs, such as Aquificae, which oxidises hydrogen gas. Other non-thermophiles, such as Acidobacteria, a ubiquitous phylum with divergent physiologies, have been found, some of which are chemolithotrophs, such as Nitrospira (nitrile-oxidising) or Leptospirillum (Fe-oxidising)., some proposed phyla however do not appear in LPSN as they were insufficiently described or are awaiting approval or it is debated if they may belong to a pre-existing phylum. An example of this is the genus Caldithrix, consisting of C. palaeochoryensis and C. abyssi, which is considered Deferribacteres, however, it shares only 81% similarity with the other Deferribacteres (Deferribacter species and relatives) and is considered a separate phylum by Rappé and Giovannoni. Additionally the placement of the genus Geovibrio in the phylum Deferribacteres is debated. With the advent of methods to analyse environmental DNA (metagenomics), the 16S rRNA of an extremely large number of undiscovered species have been found, showing that there are several whole phyla which have no known cultivable representative and that some phyla lack in culture major subdivisions as is the case for Verrucomicrobia and Chloroflexi.The term Candidatus is used for proposed species for which the lack of information prevents it to be validated, such as where the only evidence is DNA sequence data, even if the whole genome has been sequenced. When the species are members of a whole phylum it is called a candidate division (or candidate phylum) and in 2003 there were 26 candidate phyla out of 52.A candidate phylum was defined by Hugenholtz and Pace in 1998, as a set of 16S ribosomal RNA sequences with less than 85% similarity to already-described phyla. More recently an even lower threshold of 75% was proposed.Three candidate phyla were known before 1998, prior to the 85% threshold definition by Hugenholtz and Pace:

[ "Bacteroidetes", "Firmicutes", "Actinobacteria", "Proteobacteria" ]
Parent Topic
Child Topic
    No Parent Topic