Transition metal dichalcogenide monolayers

Transition metal dichalcogenide (TMD) monolayers are atomically thin semiconductors of the type MX2, with M a transition metal atom (Mo, W, etc.) and X a chalcogen atom (S, Se, or Te). One layer of M atoms is sandwiched between two layers of X atoms. They are part of the large family of so-called 2D materials, named so to emphasize their extraordinary thinness. For example, a MoS2 monolayer is only 6.5 Å thick. The key feature of these materials is the interaction of large atoms in the 2D structure as compared with first-row transition metal dichalcogenides, e.g., WTe2 exhibits anomalous giant magnetoresistance and superconductivity.Transition metal dichalcogenides (TMDs) are composedof three atomic planes and often two atomic species: a metal and two dichalcogenides. The honeycomb, hexagonal lattice has three fold symmetry and can permit mirror plane symmetry and or inversion symmetry. In the macroscopic bulk crystal, or more precisely, for an even number of monolayers, the crystal structure has an inversion center. In the case of a monolayer (or any odd number of layers), the crystal may or may not no inversion center. Two important consequences of that are:At submicron scales, 3D materials no longer have the same behavior as their 2D form, which can be an advantage. For example, graphene has a very high carrier mobility, and accompanying lower losses through the Joule effect. But graphene has zero bandgap, which results in a disqualifyingly low on/off ratio in transistor applications. TMD monolayers might be an alternative: they are structurally stable, display a band gap and show electron mobilities comparable to those of silicon, so they can be used to fabricate transistors.Exfoliation is a top down approach. In the bulk form, TMDs are crystals made of layers, which are coupled by Van-der-Waals forces. These interactions are weaker than the chemical bonds between the Mo and S in MoS2, for example. So TMD monolayers can be produced by micromechanical cleavage, just as graphene.In the bulk form, TMD have an indirect gap in the center of the Brillouin zone, whereas in monolayer form the gap becomes direct and is located in the K points.splitting (eV)splitting (eV)Common forms of radiation used to create defects in TMDs are particle and electromagnetic irradiation, impacting the structure and electronic performance of these materials. Scientist have been studying the radiation response of these materials to be used in high-radiation environments, such as space or nuclear reactors. Damage to this unique class of materials occurs mainly through sputtering and displacement for metals or radiolysis and charging for insulators and semiconductors. In order to sputter away an atom however, the electron must be able to transfer enough energy to overcome the threshold for knock-on damage. Yet, the exact quantifiable determination of this energy still needs to be determined for TMDs. Consider MoS2 as an example, TEM exposure via sputtering creates vacancies in the lattice, these vacancies are then observed to be collected together in spectroscopic lines. Additionally, when looking at the radiation response of these materials, the three parameters that are proven to matter most are the choice of substrate, the sample thickness, and the sample preparation process.A new type of asymmetric transitional metal dichalcogenide, the Janus TMDs monolayers, has been synthesized by breaking the out-of-plane structural symmetry via plasma assisted chemical vapor deposition. Janus TMDs monolayers show an asymmetric structure MXY (M = Mo or W, X/Y = S, Se or Te) exhibiting out-of-plane optical dipole and piezoelectricity due to the imbalance of the electronic wave-function between the dichalcogenides, which are absent in a non-polar TMDs monolayer, MX2. In addition, the asymmetric structure of Janus MoSSe provides an enhanced Rashba spin-orbit interaction, which suggests asymmetrically Janus TMDs monolayer can be a promising candidate for spintronic applications. In addition, Janus TMDs monolayer has been considered as an excellent material for electrocatalysis or photocatalysis.

[ "Monolayer", "Exciton", "Transition metal", "Semiconductor" ]
Parent Topic
Child Topic
    No Parent Topic