language-icon Old Web
English
Sign In

Dichloroacetic acid

Dichloroacetic acid (DCA), sometimes called bichloroacetic acid (BCA), is the chemical compound with formula CHCl2COOH. It is an acid, an analogue of acetic acid, in which 2 of the 3 hydrogen atoms of the methyl group have been replaced by chlorine atoms. Like the other chloroacetic acids, it has various practical applications. The salts and esters of dichloroacetic acid are called dichloroacetates. Salts of DCA have been studied as potential drugs because they inhibit the enzyme pyruvate dehydrogenase kinase. Dichloroacetic acid (DCA), sometimes called bichloroacetic acid (BCA), is the chemical compound with formula CHCl2COOH. It is an acid, an analogue of acetic acid, in which 2 of the 3 hydrogen atoms of the methyl group have been replaced by chlorine atoms. Like the other chloroacetic acids, it has various practical applications. The salts and esters of dichloroacetic acid are called dichloroacetates. Salts of DCA have been studied as potential drugs because they inhibit the enzyme pyruvate dehydrogenase kinase. Although preliminary studies found that DCA can slow the growth of certain tumors in animal studies and in vitro studies, as of 2012 insufficient evidence supported the use of DCA for cancer treatment. The chemistry of dichloroacetic acid is typical for halogenated organic acids. It is a member of the chloroacetic acids family. The dichloroacetate ion is produced when the acid is mixed with water. As an acid with a pKa of 1.35, pure dichloroacetic acid is classed as a strong organic acid; it is very corrosive and extremely destructive to tissues of the mucous membranes and upper respiratory tract via inhalation. DCA has been shown to occur in nature in at least one seaweed, Asparagopsis taxiformis. It is a trace product of the chlorination of drinking water and is produced by the metabolism of various chlorine-containing drugs or chemicals. DCA is typically prepared by the reduction of trichloroacetic acid (TCA). DCA is prepared from chloral hydrate also by the reaction with calcium carbonate and sodium cyanide in water followed by acidifying with hydrochloric acid. It can be also made by passing acetylene through solutions of hypochlorous acid. As a laboratory reagent, both DCA and TCA are used as precipitants to prompt macromolecules such as proteins to precipitate out of solution. Both DCA and TCA are used for cosmetic treatments (such as chemical peels and tattoo removal) and as topical medication for the chemoablation of warts, including genital warts. It can kill normal cells as well. A randomized controlled trial in children with congenital lactic acidosis found that while DCA was well tolerated, it was ineffective in improving clinical outcomes. A separate trial of DCA in children with MELAS (a syndrome of inadequate mitochondrial function, leading to lactic acidosis) was halted early, as all 15 of the children receiving DCA experienced significant nerve toxicity without any evidence of benefit from the medication. A randomized controlled trial of DCA in adults with lactic acidosis found that while DCA lowered blood lactate levels, it had no clinical benefit and did not improve hemodynamics or survival.

[ "Biochemistry", "Organic chemistry", "Inorganic chemistry" ]
Parent Topic
Child Topic
    No Parent Topic