language-icon Old Web
English
Sign In

Ripeness in viticulture

In viticulture, ripeness is the completion of the ripening process of wine grapes on the vine which signals the beginning of harvest. What exactly constitutes ripeness will vary depending on what style of wine is being produced (sparkling, still, fortified, rosé, dessert wine, etc.) and what the winemaker and viticulturist personally believe constitutes ripeness. Once the grapes are harvested, the physical and chemical components of the grape which will influence a wine's quality are essentially set so determining the optimal moment of ripeness may be considered the most crucial decision in winemaking. In viticulture, ripeness is the completion of the ripening process of wine grapes on the vine which signals the beginning of harvest. What exactly constitutes ripeness will vary depending on what style of wine is being produced (sparkling, still, fortified, rosé, dessert wine, etc.) and what the winemaker and viticulturist personally believe constitutes ripeness. Once the grapes are harvested, the physical and chemical components of the grape which will influence a wine's quality are essentially set so determining the optimal moment of ripeness may be considered the most crucial decision in winemaking. There are several factors that contribute to the ripeness of the grape. As the grapes go through veraison, sugars in the grapes will continue to rise as acid levels fall. The balance between sugar (as well as the potential alcohol level) and acids is considered one of the most critical aspects of producing quality wine so both the must weight and 'total acidity', as well as the pH of the grapes, are evaluated to determine ripeness. Towards the end of the 20th century, winemakers and viticulturists began focusing on the concept of achieving 'physiological' ripeness in the grapes-described as a more complete ripeness of tannins and other phenolic compounds in the grapes that contribute to the color, flavor and aroma of wine. If ripening is broadly defined as the development of wine grapes, then it could be said that ripening is happening throughout the continuous annual cycle of the grapevine. More narrowly defined, ripening begins at the inception of veraison. At this point (which is normally 40–60 days after fruit set though it may be longer in cooler climates), the grapes are hard and green with low sugar levels and very high levels of mostly malic acids. During veraison, which may last from 30–70 days depending on the climate and other factors, the grapes go through several changes which impact their sugar, acid, tannin and mineral composition. The concentration of phenolic compounds in the skin, most notably anthocyanins for red wine grapes, replace the green color of chlorophyll as the grape berries themselves change color. The increase of sugars in the grapes comes from the storage of carbohydrates in the roots and trunk of the grapevines as well as through the process of photosynthesis. Sucrose produced by photosynthesis is transferred from the leaves to the berries as it is broken down into glucose and fructose molecules. The rate of this build up will depend on several factors including the climate (such as a string of cloudy weather which prohibits sunlight from reaching the vine) as well as the potential yield size of grape clusters and young vine shoot tips which compete for the resources of the mother grapevine. As the concentration of sugars build up, the concentration of acids decrease due, in part, to simple dilution but also to the consumption of acids in the process of plant respiration. The decrease in free acids, as well as the buildup of potassium, triggers a rise in the pH level of the grape juice. In addition to the change in sugar, acids and pH levels other components of the grapes are building up during the ripening process. The mineral components of potassium, calcium, magnesium and sodium increase in concentration as they are disseminated among the skin of the grapes and its fleshy pulp. The color of the grape berries begin to change due to the building up of phenolic compounds such as anthocyanin in the skins. Flavonoids and volatile compounds known as 'flavor precursors' which contribute to the eventual flavor and aroma of the wine also begin to build up in the skins and pulp. Additionally the concentration of tannins in the grape increases in several areas of the grape including the skin, seeds and stem. Early in the ripening process these tannins are very bitter and 'green'. Exposure to the warmth and sunlight during the ripening period ushers in chemical changes to the tannins that when processed into wine makes the tannins feel softer in the mouth. What constitutes 'ripeness' will vary according to what style of wine is being produced as well as the particular views of winemakers and viticulturists on what optimal ripeness is. The style of wine is usually dictated by the balance between sugars and acids. What may be considered 'ripe' for one winemaker could be considered under ripe to another winemaker or even overripe to yet a third winemaker. Climate and the particular grape variety will also play a role in determining ripeness and date of harvest. In very hot climates, such as certain areas in California and Australia, ripeness is usually achieved around 30 days after veraison starts while in much cooler climates, like the Loire Valley and parts of Germany, this may not occur until 70 days after veraison. The ripening periods for each individual grape variety will vary with grapes such as Cabernet Sauvignon taking much longer to ripen compared to early ripening varieties such as Chardonnay and Pinot noir. Since over the course of ripening sugars in the grapes increase, the sweetness level as well as the potential alcohol level of the wine will play a considerable role in dictating when a grape is 'ripe' enough. This is because sugars are converted by yeast into alcohol by the process of fermentation. The greater the concentration of sugars in the grape, the greater the potential alcohol level. However, most strains of winemaking yeast have difficulties surviving in an alcohol solution above 15% alcohol by volume (ABV) and cease fermentation before all the sugar is converted in alcohol. This leaves a certain amount of residual sugar which influences the sweetness level of the wine. Wines that are destined to be sweet, such as dessert wines, are often called late harvest wines because they are harvested at extreme points of ripeness much later than when regular table wine grapes have been harvested. The presence of alcohol (particularly ethanol) in the wine contributes much more than just intoxication. It has an immense impact of the weight and mouthfeel of the wine as well as the balance of sweetness, tannins and acids. In wine tasting, the anaesthetic qualities of ethanol reduces the sensitivity of the palate to the harsh effects of acids and tannins, making the wine seem softer. It also plays a role during the ageing of wine in its complex interaction with esters and phenolic compounds that produce various aromas in wine that contribute to a wine's flavor profile. For this reason, some winemakers will value having a higher potential alcohol level and delay harvesting until the grapes have a sufficiently high concentration of sugars. For other types of wines, such as sparkling wines like Champagne, maintaining a certain amount of acidity in the grapes is important to the winemaking process. As the concentration of acids in the grapes decrease the further along the ripening process you go, grapes destined for sparkling wines are often some of the earliest grapes to be harvested in a vintage. With their high acidity and low sugar levels, these grapes would be under ripe and would produce table wines that many wine drinkers would consider unpalatable yet the balance of sugars and acids is well suited for sparkling wine production.

[ "Yeast in winemaking", "Malolactic fermentation" ]
Parent Topic
Child Topic
    No Parent Topic