language-icon Old Web
Sign In

Artificial neural network

Artificial neural networks (ANN) or connectionist systems are computing systems that are inspired by, but not necessarily identical to, the biological neural networks that constitute animal brains. Such systems 'learn' to perform tasks by considering examples, generally without being programmed with any task-specific rules. For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been manually labeled as 'cat' or 'no cat' and using the results to identify cats in other images. They do this without any prior knowledge about cats, for example, that they have fur, tails, whiskers and cat-like faces. Instead, they automatically generate identifying characteristics from the learning material that they process. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal from one artificial neuron to another. An artificial neuron that receives a signal can process it and then signal additional artificial neurons connected to it. In common ANN implementations, the signal at a connection between artificial neurons is a real number, and the output of each artificial neuron is computed by some non-linear function of the sum of its inputs. The connections between artificial neurons are called 'edges'. Artificial neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Artificial neurons may have a threshold such that the signal is only sent if the aggregate signal crosses that threshold. Typically, artificial neurons are aggregated into layers. Different layers may perform different kinds of transformations on their inputs. Signals travel from the first layer (the input layer), to the last layer (the output layer), possibly after traversing the layers multiple times. The original goal of the ANN approach was to solve problems in the same way that a human brain would. However, over time, attention moved to performing specific tasks, leading to deviations from biology. Artificial neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis. Warren McCulloch and Walter Pitts (1943) created a computational model for neural networks based on mathematics and algorithms called threshold logic. This model paved the way for neural network research to split into two approaches. One approach focused on biological processes in the brain while the other focused on the application of neural networks to artificial intelligence. This work led to work on nerve networks and their link to finite automata. In the late 1940s, D. O. Hebb created a learning hypothesis based on the mechanism of neural plasticity that became known as Hebbian learning. Hebbian learning is unsupervised learning. This evolved into models for long-term potentiation. Researchers started applying these ideas to computational models in 1948 with Turing's B-type machines. Farley and Clark (1954) first used computational machines, then called 'calculators', to simulate a Hebbian network. Other neural network computational machines were created by Rochester, Holland, Habit and Duda (1956). Rosenblatt (1958) created the perceptron, an algorithm for pattern recognition. With mathematical notation, Rosenblatt described circuitry not in the basic perceptron, such as the exclusive-or circuit that could not be processed by neural networks at the time. In 1959, a biological model proposed by Nobel laureates Hubel and Wiesel was based on their discovery of two types of cells in the primary visual cortex: simple cells and complex cells. The first functional networks with many layers were published by Ivakhnenko and Lapa in 1965, becoming the Group Method of Data Handling. Neural network research stagnated after machine learning research by Minsky and Papert (1969), who discovered two key issues with the computational machines that processed neural networks. The first was that basic perceptrons were incapable of processing the exclusive-or circuit. The second was that computers didn't have enough processing power to effectively handle the work required by large neural networks. Neural network research slowed until computers achieved far greater processing power. Much of artificial intelligence had focused on high-level (symbolic) models that are processed by using algorithms, characterized for example by expert systems with knowledge embodied in if-then rules, until in the late 1980s research expanded to low-level (sub-symbolic) machine learning, characterized by knowledge embodied in the parameters of a cognitive model. A key trigger for renewed interest in neural networks and learning was Werbos's (1975) backpropagation algorithm that made the training of multi-layer networks feasible and efficient. Backpropagation distributed the error term back up through the layers, by modifying the weights at each node.

[ "Algorithm", "Machine learning", "Artificial intelligence", "Input selection", "oscillatory neural network", "parallel learning", "intelligent modeling", "Radial basis function" ]
Parent Topic
Child Topic
    No Parent Topic