language-icon Old Web
English
Sign In

Algorithmic trading

Algorithmic trading is a method of executing orders using automated pre-programmed trading instructions accounting for variables such as time, price, and volume to send small slices of the order (child orders) out to the market over time. They were developed so that traders do not need to constantly watch a stock and repeatedly send those slices out manually. Popular 'algos' include Percentage of Volume, Pegged, VWAP, TWAP, Implementation shortfall, Target close. In the twenty-first century, algorithmic trading has been gaining traction with both retail and institutional traders. It is widely used by investment banks, pension funds, mutual funds, and hedge funds because these institutional traders need to execute large orders in markets that cannot support all of the size at once. The term is also used to mean automated trading system. These do indeed have the goal of making a profit. Also known as black box trading, Quant or Quantitative trading, these encompass trading strategies that are heavily reliant on complex mathematical formulas and high-speed computer programs. Such systems run strategies including market making, inter-market spreading, arbitrage, or pure speculation such as trend following. Many fall into the category of high-frequency trading (HFT), which are characterized by high turnover and high order-to-trade ratios. As a result, in February 2012, the Commodity Futures Trading Commission (CFTC) formed a special working group that included academics and industry experts to advise the CFTC on how best to define HFT. HFT strategies utilize computers that make elaborate decisions to initiate orders based on information that is received electronically, before human traders are capable of processing the information they observe. Algorithmic trading and HFT have resulted in a dramatic change of the market microstructure, particularly in the way liquidity is provided. Profitability projections by the TABB Group, a financial services industry research firm, for the US equities HFT industry were US$1.3 billion before expenses for 2014, significantly down on the maximum of US$21 billion that the 300 securities firms and hedge funds that then specialized in this type of trading took in profits in 2008, which the authors had then called 'relatively small' and 'surprisingly modest' when compared to the market's overall trading volume. In March 2014, Virtu Financial, a high-frequency trading firm, reported that during five years the firm as a whole was profitable on 1,277 out of 1,278 trading days, losing money just one day, empirically demonstrating the law of large numbers benefit of trading thousands to millions of tiny, low-risk and low-edge trades every trading day. A third of all European Union and United States stock trades in 2006 were driven by automatic programs, or algorithms. As of 2009, studies suggested HFT firms accounted for 60–73% of all US equity trading volume, with that number falling to approximately 50% in 2012. In 2006, at the London Stock Exchange, over 40% of all orders were entered by algorithmic traders, with 60% predicted for 2007. American markets and European markets generally have a higher proportion of algorithmic trades than other markets, and estimates for 2008 range as high as an 80% proportion in some markets. Foreign exchange markets also have active algorithmic trading (about 25% of orders in 2006). Futures markets are considered fairly easy to integrate into algorithmic trading, with about 20% of options volume expected to be computer-generated by 2010. Bond markets are moving toward more access to algorithmic traders. Algorithmic trading and HFT have been the subject of much public debate since the U.S. Securities and Exchange Commission and the Commodity Futures Trading Commission said in reports that an algorithmic trade entered by a mutual fund company triggered a wave of selling that led to the 2010 Flash Crash. The same reports found HFT strategies may have contributed to subsequent volatility by rapidly pulling liquidity from the market. As a result of these events, the Dow Jones Industrial Average suffered its second largest intraday point swing ever to that date, though prices quickly recovered. (See List of largest daily changes in the Dow Jones Industrial Average.) A July 2011 report by the International Organization of Securities Commissions (IOSCO), an international body of securities regulators, concluded that while 'algorithms and HFT technology have been used by market participants to manage their trading and risk, their usage was also clearly a contributing factor in the flash crash event of May 6, 2010.' However, other researchers have reached a different conclusion. One 2010 study found that HFT did not significantly alter trading inventory during the Flash Crash. Some algorithmic trading ahead of index fund rebalancing transfers profits from investors. Computerization of the order flow in financial markets began in the early 1970s, with some landmarks being the introduction of the New York Stock Exchange's “designated order turnaround” system (DOT, and later SuperDOT), which routed orders electronically to the proper trading post, which executed them manually. The 'opening automated reporting system' (OARS) aided the specialist in determining the market clearing opening price (SOR; Smart Order Routing).

[ "Finance", "Financial economics", "Monetary economics", "High-frequency trading", "trading rules", "Program trading", "Systematic trading", "Alternative trading system" ]
Parent Topic
Child Topic
    No Parent Topic