language-icon Old Web
English
Sign In

Smoothened

4JKV, 4N4W, 4O9R, 4QIM, 4QIN, 5L7I6608319757ENSG00000128602ENSMUSG00000001761Q99835P56726NM_005631NM_176996NP_005622NP_795970Smoothened is a protein that in humans is encoded by the SMO gene. Smoothened is a Class Frizzled (Class F) G protein-coupled receptor that is a component of the hedgehog signaling pathway and is conserved from flies to humans. It is the molecular target of the natural teratogen cyclopamine. It also is the target of Vismodegib, the first hedgehog pathway inhibitor to be approved by the U.S. Food and Drug Administration (FDA). Smoothened is a protein that in humans is encoded by the SMO gene. Smoothened is a Class Frizzled (Class F) G protein-coupled receptor that is a component of the hedgehog signaling pathway and is conserved from flies to humans. It is the molecular target of the natural teratogen cyclopamine. It also is the target of Vismodegib, the first hedgehog pathway inhibitor to be approved by the U.S. Food and Drug Administration (FDA). Cellular localization plays an essential role in the function of SMO, which anchors to the cell membrane as a 7-pass transmembrane protein. Stimulation of the patched 12-pass transmembrane receptor by the sonic hedgehog ligand leads to translocation of SMO to the primary cilium in vertebrates in a process that involves the exit of patched from the primary cilium, where it normally localizes in its unstimulated state. Vertebrate SMO that is mutated in the domain required for ciliary localisation often cannot contribute to hedgehog pathway activation. Conversely, SMO can become constitutively localized to the primary cilium and potentially activate pathway signaling constitutively as a result of a tryptophan to leucine mutation in the aforementioned domain. SMO has been shown to move during patched stimulation from the plasma membrane near the primary cilium to the ciliary membrane itself via a lateral transport pathway along the membrane, as opposed to via directed transport by vesicles. The cAMP-PKA pathway is known to promote the lateral movement of SMO and hedgehog signal transduction in general. In invertebrates like Drosophila, SMO does not organize at cilia and instead is generally translocated to the plasma membrane following hedgehog binding to patched. After cellular localization, SMO must additionally be activated by a distinct mechanism in order to stimulate hedgehog signal transduction, but that mechanism is unknown. There is evidence for the existence of an unidentified endogenous ligand that binds SMO and activates it. It is believed that mutations in SMO can mimic the ligand-induced conformation of SMO and activate constitutive signal transduction. SMO plays a key role in transcriptional repression and activation by the zinc-finger transcription factor Cubitus interruptus (Ci; known as Gli in vertebrates). When the hedgehog pathway is inactive, a complex of Fused (Fu), Supressor of Fused (Sufu), and the kinesin motor protein Costal-2 (Cos2) tether Ci to microtubules. In this complex, Cos2 promotes proteolytic cleavage of Ci by activating hyperphosphorylation of Ci and subsequent recruitment of ubiquitin ligase; the cleaved Ci goes on to act as a repressor of hedgehog-activated transcription. However, when hedgehog signaling is active, Ci remains intact and acts as a transcriptional activator of the same genes that its cleaved form suppresses. SMO has been shown to bind Costal-2 and play a role in the localization of the Ci complex and prevention of Ci cleavage. Additionally, it is known that vertebrate SMO contributes to the activation of Gli as a transcription factor via association with ciliary structures such as Evc2, but these mechanisms are not fully understood. SMO can function as an oncogene. Activating SMO mutations can lead to unregulated activation of the hedgehog pathway and serve as driving mutations for cancers such as medulloblastoma, basal-cell carcinoma, pancreatic cancer, and prostate cancer. As such, SMO is an attractive cancer drug target, along with the many hedgehog pathway agonists and antagonists that are known to directly target SMO. Cholesterol is known to be crucial in regulating the overall hedgehog pathway, and congenital mutations in cholesterol synthesis pathways can inactivate SMO specifically, leading to developmental disorders. For example, oxysterol 20(S)-OHC is known to activate vertebrate SMO by binding the cysteine rich domain near its extracellular amino-terminal region. In the context of cancer, 20(S)-OHC is the target of a proposed anti-cancer oxysterol binding inhibitor.

[ "Cell biology", "Molecular biology", "Cancer research", "Hedgehog", "Hedgehog signaling pathway", "Saridegib", "PTCH2", "Sonidegib", "Patched-2 Receptor", "PTC Pathway" ]
Parent Topic
Child Topic
    No Parent Topic