language-icon Old Web
English
Sign In

Vanadium

Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, ductile, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) somewhat stabilizes the free metal against further oxidation. Andrés Manuel del Río discovered compounds of vanadium in 1801 in Mexico by analyzing a new lead-bearing mineral he called 'brown lead', and presumed its qualities were due to the presence of a new element, which he named erythronium (derived from the Greek word for 'red', ἐρυθρόν, eruthrón) since upon heating most of the salts turned red. Four years later, he was (erroneously) convinced by other scientists that erythronium was identical to chromium. Chlorides of vanadium were generated in 1830 by Nils Gabriel Sefström who thereby proved that a new element was involved, which he named 'vanadium' after the Scandinavian goddess of beauty and fertility, Vanadís (Freyja). Both names were attributed to the wide range of colors found in vanadium compounds. Del Rio's lead mineral was later renamed vanadinite for its vanadium content. In 1867 Henry Enfield Roscoe obtained the pure element. Vanadium occurs naturally in about 65 minerals and in fossil fuel deposits. It is produced in China and Russia from steel smelter slag. Other countries produce it either from magnetite directly, flue dust of heavy oil, or as a byproduct of uranium mining. It is mainly used to produce specialty steel alloys such as high-speed tool steels. The most important industrial vanadium compound, vanadium pentoxide, is used as a catalyst for the production of sulfuric acid. The vanadium redox battery for energy storage may be an important application in the future. Large amounts of vanadium ions are found in a few organisms, possibly as a toxin. The oxide and some other salts of vanadium have moderate toxicity. Particularly in the ocean, vanadium is used by some life forms as an active center of enzymes, such as the vanadium bromoperoxidase of some ocean algae. Vanadium was discovered by Andrés Manuel del Río, a Spanish-Mexican mineralogist, in 1801. Del Río extracted the element from a sample of Mexican 'brown lead' ore, later named vanadinite. He found that its salts exhibit a wide variety of colors, and as a result he named the element panchromium (Greek: παγχρώμιο 'all colors'). Later, Del Río renamed the element erythronium (Greek: ερυθρός 'red') because most of the salts turned red upon heating. In 1805, French chemist Hippolyte Victor Collet-Descotils, backed by del Río's friend Baron Alexander von Humboldt, incorrectly declared that del Río's new element was only an impure sample of chromium. Del Río accepted Collet-Descotils' statement and retracted his claim. In 1831, Swedish chemist Nils Gabriel Sefström rediscovered the element in a new oxide he found while working with iron ores. Later that year, Friedrich Wöhler confirmed del Río's earlier work. Sefström chose a name beginning with V, which had not yet been assigned to any element. He called the element vanadium after Old Norse Vanadís (another name for the Norse Vanr goddess Freyja, whose attributes include beauty and fertility), because of the many beautifully colored chemical compounds it produces. In 1831, the geologist George William Featherstonhaugh suggested that vanadium should be renamed 'rionium' after del Río, but this suggestion was not followed. The isolation of vanadium metal was difficult. In 1831, Berzelius reported the production of the metal, but Henry Enfield Roscoe showed that Berzelius had produced the nitride, vanadium nitride (VN). Roscoe eventually produced the metal in 1867 by reduction of vanadium(II) chloride, VCl2, with hydrogen. In 1927, pure vanadium was produced by reducing vanadium pentoxide with calcium. The first large-scale industrial use of vanadium was in the steel alloy chassis of the Ford Model T, inspired by French race cars. Vanadium steel allowed reduced weight while increasing tensile strength (ca. 1905). For the first decade of the 20th century, most vanadium ore was mined by American Vanadium Company from the Minas Ragra in Peru. Later the demand for uranium rose, leading to increased mining of that metal's ores. One major uranium ore was carnotite, which also contains vanadium. Thus, vanadium became available as a by-product of uranium production. Eventually uranium mining began to supply a large share of the demand for vanadium.

[ "Organic chemistry", "Inorganic chemistry", "Metallurgy", "Vanadium deficiency", "Ascidiidae", "Pentoxide", "Vanadium(III) oxide", "Schreyerite" ]
Parent Topic
Child Topic
    No Parent Topic