language-icon Old Web
English
Sign In

Computational biology

Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, ecological, behavioral, and social systems. The field is broadly defined and includes foundations in biology, applied mathematics, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, computer science and evolution.Computational biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems.Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, ecological, behavioral, and social systems. The field is broadly defined and includes foundations in biology, applied mathematics, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, computer science and evolution. Computational biology is different from biological computing, which is a subfield of computer science and computer engineering using bioengineering and biology to build computers, but is similar to bioinformatics, which is an interdisciplinary science using computers to store and process biological data. Computational Biology, which includes many aspects of bioinformatics, is the science of using biological data to develop algorithms or models to understand biological systems and relationships. Until recently, biologists did not have access to very large amounts of data. This data has now become commonplace, particularly in molecular biology and genomics. Researchers were able to develop analytical methods for interpreting biological information, but were unable to share them quickly among colleagues. Bioinformatics began to develop in the early 1970s. It was considered the science of analyzing informatics processes of various biological systems. At this time, research in artificial intelligence was using network models of the human brain in order to generate new algorithms. This use of biological data to develop other fields pushed biological researchers to revisit the idea of using computers to evaluate and compare large data sets. By 1982, information was being shared among researchers through the use of punch cards. The amount of data being shared began to grow exponentially by the end of the 1980s. This required the development of new computational methods in order to quickly analyze and interpret relevant information. Since the late 1990s, computational biology has become an important part of developing emerging technologies for the field of biology.The terms computational biology and evolutionary computation have a similar name, but are not to be confused. Unlike computational biology, evolutionary computation is not concerned with modeling and analyzing biological data. It instead creates algorithms based on the ideas of evolution across species. Sometimes referred to as genetic algorithms, the research of this field can be applied to computational biology. While evolutionary computation is not inherently a part of computational biology, computational evolutionary biology is a subfield of it. Computational biology has been used to help sequence the human genome, create accurate models of the human brain, and assist in modeling biological systems. Computational anatomy is a discipline focusing on the study of anatomical shape and form at the visible or gross anatomical 50 − 100 μ {displaystyle 50-100mu } scale of morphology. It involves the development and application of computational, mathematical and data-analytical methods for modeling and simulation of biological structures. It focuses on the anatomical structures being imaged, rather than the medical imaging devices. Due to the availability of dense 3D measurements via technologies such as magnetic resonance imaging (MRI), computational anatomy has emerged as a subfield of medical imaging and bioengineering for extracting anatomical coordinate systems at the morphome scale in 3D. The original formulation of computational anatomy is as a generative model of shape and form from exemplars acted upon via transformations. The diffeomorphism group is used to study different coordinate systems via coordinate transformations as generated via the Lagrangian and Eulerian velocities of flow from one anatomical configuration in R 3 {displaystyle {mathbb {R} }^{3}} to another. It relates with shape statistics and morphometrics, with the distinction that diffeomorphisms are used to map coordinate systems, whose study is known as diffeomorphometry. Computational biomodeling is a field concerned with building computer models of biological systems. Computational biomodeling aims to develop and use visual simulations in order to assess the complexity of biological systems. This is accomplished through the use of specialized algorithms, and visualization software. These models allow for prediction of how systems will react under different environments. This is useful for determining if a system is robust. A robust biological system is one that “maintain their state and functions against external and internal perturbations”, which is essential for a biological system to survive. Computational biomodeling generates a large archive of such data, allowing for analysis from multiple users. While current techniques focus on small biological systems, researchers are working on approaches that will allow for larger networks to be analyzed and modeled. A majority of researchers believe that this will be essential in developing modern medical approaches to creating new drugs and gene therapy.A useful modelling approach is to use Petri nets via tools such as esyN

[ "Biology", "quantitative biology", "Mixed libraries", "omics data", "Microbiology finding", "pathway diagram" ]
Parent Topic
Child Topic
    No Parent Topic