language-icon Old Web
English
Sign In

Ecotoxicology

Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology. Ecotoxicology is the study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology. The ultimate goal of this approach is to be able to reveal and to predict the effects of pollution within the context of all other environmental factors. Based on this knowledge the most efficient and effective action to prevent or remediate any detrimental effect can be identified. In those ecosystems that are already impacted by pollution ecotoxicological studies can inform as to the best course of action to restore ecosystem services and functions efficiently and effectively. Ecotoxicology differs from environmental toxicology in that it integrates the effects of stressors across all levels of biological organisation from the molecular to whole communities and ecosystems, whereas environmental toxicology focuses upon effects at the level of the individual and below. The publication in 1962 of Rachel Carson's seminal volume, Silent Spring catalysed the separation of environmental toxicology – and, subsequently, ecotoxicology – from classical toxicology. The revolutionary element in Carson's work was her extrapolation from single-organism effects to effects at the whole ecosystem and the 'balance of nature' The term 'ecotoxicology' was coined by René Truhaut in 1969 who defined it as 'the branch of toxicology concerned with the study of toxic effects, caused by natural or synthetic pollutants, to the constituents of ecosystems, animal (including human), vegetable and microbial, in an integral context” Although initially devoted to the study of anthropogenic toxicants, the term is now used to describe research into the ecological effects of diverse abiotic and biotic stresses, thereby integrating secondary effects of anthropogenic activities such as ocean acidification resulting from increased dissolution of carbon dioxide into the surface waters of the oceans It has been proposed that this broadening of focus from purely toxicological effects to the consideration of more general stressors moves beyond the definition of 'ecotoxicology'. Van Straalen (2003), in particular, argued that the field had diversified to become Stress Ecology and that, as the effects of anthropogenic toxicants compound existing, natural stressors, exclusive study of their effects in an ecological context was nonsensical. Whilst this proposal is well argued, it is odd of Van Straalen to have specified solely 'ecology' as the field when the original field of ecotoxicology was intended to cover all levels of biological organisation from molecular-level causes to ecosystem-level effects. Therefore, the term Stress Biology would seem more appropriate. Chemicals are shown to prohibit the growth of seed germination of an arrangement of different plant species. Plants are what make up the most vital trophic level of the biomass pyramids, known as the primary producers. Because they are at the bottom of the pyramid, every other organism in an ecosystem relies on the health and abundance of the primary producers in order to survive. If plants are battling problems with diseases relating to exposure to chemicals, other organisms will either die because of starvation or obtain the disease by eating the plants or animals already infected. So ecotoxicology is an ongoing battle that stems from many sources and can affect everything and everyone in an ecosystem

[ "Toxicity", "Ecology", "Toxicology", "Environmental chemistry", "Schizopera knabeni", "Pheretima sieboldi", "Allorchestes compressa", "Melita plumulosa", "Polychlorinated biphenyl.Aroclor 1242" ]
Parent Topic
Child Topic
    No Parent Topic