language-icon Old Web
English
Sign In

Orbital period

The orbital period is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. The orbital period is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. For objects in the Solar System, this is often referred to as the sidereal period, determined by a 360° revolution of one celestial body around another, e.g. the Earth orbiting the Sun. The term sidereal denotes that the object returns to the same position relative to the fixed stars projected in the sky. When describing orbits of binary stars, the orbital period is usually referred to as just the period. For example, Jupiter has a sidereal period of 11.86 years while the main binary star Alpha Centauri AB has a period of about 79.91 years. Another important orbital period definition can refer to the repeated cycles for celestial bodies as observed from the Earth's surface. An example is the so-called synodic period, applying to the elapsed time where planets return to the same kind of phenomena or location. For example, when any planet returns between its consecutive observed conjunctions with or oppositions to the Sun. For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months. Periods in astronomy are conveniently expressed in various units of time, often in hours, days, or years. They can be also defined under different specific astronomical definitions that are mostly caused by small complex eternal gravitational influences by other celestial objects. Such variations also include the true placement of the centre of gravity between two astronomical bodies (barycenter), perturbations by other planets or bodies, orbital resonance, general relativity, etc. Most are investigated by detailed complex astronomical theories using celestial mechanics using precise positional observations of celestial objects via astrometry. There are many periods related to the orbits of objects, each of which are often used in the various fields of astronomy and astrophysics. Examples of some of the common ones include the following: According to Kepler's Third Law, the orbital period T (in seconds) of two point masses orbiting each other in a circular or elliptic orbit is:

[ "Binary number", "Photometry (optics)", "Orbit", "Stars", "Mars cycler", "Binary mass function" ]
Parent Topic
Child Topic
    No Parent Topic