language-icon Old Web
English
Sign In

Galaxy rotation curve

The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot, and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from each side are averaged to create the curve. A significant discrepancy exists between the experimental curves observed, and a curve derived from theory. The theory of dark matter is currently postulated to account for the variance. The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot, and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from each side are averaged to create the curve. A significant discrepancy exists between the experimental curves observed, and a curve derived from theory. The theory of dark matter is currently postulated to account for the variance. The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. The rotation curves of spiral galaxies are asymmetric, so the observational data from each side of a galaxy are generally averaged. Rotation curve asymmetry appears to be normal rather than exceptional. The rotational/orbital speeds of galaxies/stars do not follow the rules found in other orbital systems such as stars/planets and planets/moons that have most of their mass at the centre. Stars revolve around their galaxy's centre at equal or increasing speed over a large range of distances. In contrast, the orbital velocities of planets in planetary systems and moons orbiting planets decline with distance. In the latter cases, this reflects the mass distributions within those systems. The mass estimations for galaxies based on the light they emit are far too low to explain the velocity observations. The galaxy rotation problem is the discrepancy between observed galaxy rotation curves and the theoretical prediction, assuming a centrally dominated mass associated with the observed luminous material. When mass profiles of galaxies are calculated from the distribution of stars in spirals and mass-to-light ratios in the stellar disks, they do not match with the masses derived from the observed rotation curves and the law of gravity. A solution to this conundrum is to hypothesize the existence of dark matter and to assume its distribution from the galaxy's center out to its halo. Though dark matter is by far the most accepted explanation of the rotation problem, other proposals have been offered with varying degrees of success. Of the possible alternatives, one the most notable is modified newtonian dynamics (MOND), which involves modifying the laws of gravity. In 1932, Jan Hendrik Oort became the first to report that measurements of the stars in the solar neighborhood indicated that they moved faster than expected when a mass distribution based upon visible matter was assumed, but these measurements were later determined to be essentially erroneous. In 1939, Horace Babcock reported in his PhD thesis measurements of the rotation curve for Andromeda which suggested that the mass-to-luminosity ratio increases radially. He attributed that to either the absorption of light within the galaxy or to modified dynamics in the outer portions of the spiral and not to any form of missing matter. Babcock's measurements turned out to disagree substantially with those found later, and the first measurement of an extended rotation curve in good agreement with modern data was published in 1957 by Henk van de Hulst and collaborators, who studied M31 with the newly commissioned Dwingeloo 25 meter telescope. A companion paper by Maarten Schmidt showed that this rotation curve could be fit by a flattened mass distribution more extensive than the light. In 1959, Louise Volders used the same telescope to demonstrate that the spiral galaxy M33 also does not spin as expected according to Keplerian dynamics. Reporting on NGC 3115, Jan Oort wrote that 'the distribution of mass in the system appears to bear almost no relation to that of light... one finds the ratio of mass to light in the outer parts of NGC 3115 to be about 250'. On page 302-303 of his journal article, he wrote that 'The strongly condensed luminous system appears imbedded in a large and more or less homogeneous mass of great density' and although he went on to speculate that this mass may be either extremely faint dwarf stars or interstellar gas and dust, he had clearly detected the dark matter halo of this galaxy. In the late 1960s and early 1970s, Vera Rubin, an astronomer at the Department of Terrestrial Magnetism at the Carnegie Institution of Washington, worked with a new sensitive spectrograph that could measure the velocity curve of edge-on spiral galaxies to a greater degree of accuracy than had ever before been achieved. Together with fellow staff-member Kent Ford, Rubin announced at a 1975 meeting of the American Astronomical Society the discovery that most stars in spiral galaxies orbit at roughly the same speed, and that this implied that galaxy masses grow approximately linearly with radius well beyond the location of most of the stars (the galactic bulge). Rubin presented her results in an influential paper in 1980. These results suggested that either Newtonian gravity does not apply universally or that, conservatively, upwards of 50% of the mass of galaxies was contained in the relatively dark galactic halo. Although initially met with skepticism, Rubin's results have been confirmed over the subsequent decades. If Newtonian mechanics is assumed to be correct, it would follow that most of the mass of the galaxy had to be in the galactic bulge near the center and that the stars and gas in the disk portion should orbit the center at decreasing velocities with radial distance from the galactic center (the dashed line in Fig. 1).

[ "Elliptical galaxy", "Galaxy formation and evolution", "Galaxy", "Dark matter", "Halo", "Cuspy halo problem", "Polar-ring galaxy", "BX442", "Tully–Fisher relation", "Ursa Major Cluster" ]
Parent Topic
Child Topic
    No Parent Topic