language-icon Old Web
English
Sign In

Film speed

Relatively insensitive film, with a correspondingly lower speed index, requires more exposure to light to produce the same image density as a more sensitive film, and is thus commonly termed a slow film. Highly sensitive films are correspondingly termed fast films. In both digital and film photography, the reduction of exposure corresponding to use of higher sensitivities generally leads to reduced image quality (via coarser film grain or higher image noise of other types). In short, the higher the sensitivity, the grainier the image will be. Ultimately sensitivity is limited by the quantum efficiency of the film or sensor. The first known practical sensitometer, which allowed measurements of the speed of photographic materials, was invented by the Polish engineer Leon Warnerke – pseudonym of Władysław Małachowski (1837–1900) – in 1880, among the achievements for which he was awarded the Progress Medal of the Photographic Society of Great Britain in 1882. It was commercialized since 1881. The Warnerke Standard Sensitometer consisted of a frame holding an opaque screen with an array of typically 25 numbered, gradually pigmented squares brought into contact with the photographic plate during a timed test exposure under a phosphorescent tablet excited before by the light of a burning magnesium ribbon. The speed of the emulsion was then expressed in 'degrees' Warnerke (sometimes seen as Warn. or °W.) corresponding with the last number visible on the exposed plate after development and fixation. Each number represented an increase of 1/3 in speed, typical plate speeds were between 10° and 25° Warnerke at the time. His system saw some success but proved to be unreliable due to its spectral sensitivity to light, the fading intensity of the light emitted by the phosphorescent tablet after its excitation as well as high built-tolerances. The concept, however, was later built upon in 1900 by Henry Chapman Jones (1855–1932) in the development of his plate tester and modified speed system. Another early practical system for measuring the sensitivity of an emulsion was that of Hurter and Driffield (H&D), originally described in 1890, by the Swiss-born Ferdinand Hurter (1844–1898) and British Vero Charles Driffield (1848–1915). In their system, speed numbers were inversely proportional to the exposure required. For example, an emulsion rated at 250 H&D would require ten times the exposure of an emulsion rated at 2500 H&D. The methods to determine the sensitivity were later modified in 1925 (in regard to the light source used) and in 1928 (regarding light source, developer and proportional factor)—this later variant was sometimes called 'H&D 10'. The H&D system was officially accepted as a standard in the former Soviet Union from 1928 until September 1951, when it was superseded by GOST 2817-50. The Scheinergrade (Sch.) system was devised by the German astronomer Julius Scheiner (1858–1913) in 1894 originally as a method of comparing the speeds of plates used for astronomical photography. Scheiner's system rated the speed of a plate by the least exposure to produce a visible darkening upon development. Speed was expressed in degrees Scheiner, originally ranging from 1° Sch. to 20° Sch., where an increment of 19° Sch. corresponded to a hundredfold increase in sensitivity, which meant that an increment of 3° Sch. came close to a doubling of sensitivity. The system was later extended to cover larger ranges and some of its practical shortcomings were addressed by the Austrian scientist Josef Maria Eder (1855–1944) and Flemish-born botanist Walter Hecht  (1896–1960), (who, in 1919/1920, jointly developed their Eder–Hecht neutral wedge sensitometer measuring emulsion speeds in Eder–Hecht grades). Still, it remained difficult for manufactures to reliably determine film speeds, often only by comparing with competing products, so that an increasing number of modified semi-Scheiner-based systems started to spread, which no longer followed Scheiner's original procedures and thereby defeated the idea of comparability.

[ "Computer hardware", "Electronic engineering", "Acoustics", "Optics", "Visual arts" ]
Parent Topic
Child Topic
    No Parent Topic