language-icon Old Web
English
Sign In

Cellulosic ethanol

Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It is a biofuel produced from grasses, wood, algae, or other plants. The fibrous parts of the plants are mostly inedible to animals, including humans, except for ruminants (grazing, cud-chewing animals such as cows or sheep). Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It is a biofuel produced from grasses, wood, algae, or other plants. The fibrous parts of the plants are mostly inedible to animals, including humans, except for ruminants (grazing, cud-chewing animals such as cows or sheep). Considerable interest in cellulosic ethanol exists due to its important economical potential. Growth of cellulose by plants is a mechanism that captures and stores solar energy chemically in nontoxic ways with resultant supplies that are easy to transport and store. Additionally, transport may be unneeded anyway, because grasses or trees can grow almost anywhere temperate. This is why commercially practical cellulosic ethanol is widely viewed as a next level of development for the biofuel industry that could reduce demand for oil and gas drilling and even nuclear power in ways that grain-based ethanol fuel alone cannot. Potential exists for the many benefits of carbonaceous liquid fuels and petrochemicals (which today's standard of living depends on) but in a carbon cycle–balanced and renewable way (recycling surface and atmosphere carbon instead of pumping underground carbon up into it and thus adding to it). Commercially practical cellulosic alcohol could also avoid one of the problems with today's conventional (grain-based) biofuels, which is that they set up competition for grain with food purposes, potentially driving up the price of food. To date, what stands in the way of these goals is that production of cellulosic alcohol is not yet sufficiently practical on a commercial scale. Cellulosic ethanol is a type of biofuel produced from lignocellulose, a structural material that comprises much of the mass of plants. Lignocellulose is composed mainly of cellulose, hemicellulose and lignin. Corn stover, Panicum virgatum (switchgrass), Miscanthus grass species, wood chips and the byproducts of lawn and tree maintenance are some of the more popular cellulosic materials for ethanol production. Production of ethanol from lignocellulose has the advantage of abundant and diverse raw material compared to sources such as corn and cane sugars, but requires a greater amount of processing to make the sugar monomers available to the microorganisms typically used to produce ethanol by fermentation. Switchgrass and Miscanthus are the major biomass materials being studied today, due to their high productivity per acre. Cellulose, however, is contained in nearly every natural, free-growing plant, tree, and bush, in meadows, forests, and fields all over the world without agricultural effort or cost needed to make it grow. One of the benefits of cellulosic ethanol is it reduces greenhouse gas emissions (GHG) by 85% over reformulated gasoline. By contrast, starch ethanol (e.g., from corn), which most frequently uses natural gas to provide energy for the process, may not reduce GHG emissions at all depending on how the starch-based feedstock is produced. According to the National Academy of Sciences in 2011, there is no commercially viable bio-refinery in existence to convert lignocellulosic biomass to fuel. Absence of production of cellulosic ethanol in the quantities required by the regulation was the basis of a United States Court of Appeals for the District of Columbia decision announced January 25, 2013, voiding a requirement imposed on car and truck fuel producers in the United States by the Environmental Protection Agency requiring addition of cellulosic biofuels to their products. These issues, along with many other difficult production challenges, led George Washington University policy researchers to state that 'in the short term, ethanol cannot meet the energy security and environmental goals of a gasoline alternative.' The French chemist, Henri Braconnot, was the first to discover that cellulose could be hydrolyzed into sugars by treatment with sulfuric acid in 1819. The hydrolyzed sugar could then be processed to form ethanol through fermentation. The first commercialized ethanol production began in Germany in 1898, where acid was used to hydrolyze cellulose. In the United States, the Standard Alcohol Company opened the first cellulosic ethanol production plant in South Carolina in 1910. Later, a second plant was opened in Louisiana. However, both plants were closed after World War I due to economic reasons. The first attempt at commercializing a process for ethanol from wood was done in Germany in 1898. It involved the use of dilute acid to hydrolyze the cellulose to glucose, and was able to produce 7.6 liters of ethanol per 100 kg of wood waste (18 US gal (68 L) per ton). The Germans soon developed an industrial process optimized for yields of around 50 US gallons (190 L) per ton of biomass. This process soon found its way to the US, culminating in two commercial plants operating in the southeast during World War I. These plants used what was called 'the American Process' — a one-stage dilute sulfuric acid hydrolysis. Though the yields were half that of the original German process (25 US gallons (95 L) of ethanol per ton versus 50), the throughput of the American process was much higher. A drop in lumber production forced the plants to close shortly after the end of World War I. In the meantime, a small but steady amount of research on dilute acid hydrolysis continued at the USFS's Forest Products Laboratory. During World War II, the US again turned to cellulosic ethanol, this time for conversion to butadiene to produce synthetic rubber. The Vulcan Copper and Supply Company was contracted to construct and operate a plant to convert sawdust into ethanol. The plant was based on modifications to the original German Scholler process as developed by the Forest Products Laboratory. This plant achieved an ethanol yield of 50 US gal (190 L) per dry ton, but was still not profitable and was closed after the war. With the rapid development of enzyme technologies in the last two decades, the acid hydrolysis process has gradually been replaced by enzymatic hydrolysis. Chemical pretreatment of the feedstock is required to prehydrolyze (separate) hemicellulose, so it can be more effectively converted into sugars. The dilute acid pretreatment is developed based on the early work on acid hydrolysis of wood at the USFS's Forest Products Laboratory. Recently, the Forest Products Laboratory together with the University of Wisconsin–Madison developed a sulfite pretreatment to overcome the recalcitrance of lignocellulose for robust enzymatic hydrolysis of wood cellulose. US President George W. Bush, in his State of the Union address delivered January 31, 2006, proposed to expand the use of cellulosic ethanol. In his State of the Union Address on January 23, 2007, President Bush announced a proposed mandate for 35 billion US gallons (130,000,000 m3) of ethanol by 2017. It is widely recognized that the maximum production of ethanol from corn starch is 15 billion US gallons (57,000,000 m3) per year, implying a proposed mandate for production of some 20 billion US gallons (76,000,000 m3) more per year of cellulosic ethanol by 2017. Bush's proposed plan includes $2 billion funding (from 2007 to 2017?) for cellulosic ethanol plants, with an additional $1.6 billion (from 2007 to 2017?) announced by the USDA on January 27, 2007.

[ "Cellulose", "Cellulosic ethanol commercialization", "Energy Independence and Security Act of 2007", "Cellulosic sugars", "Dimethylol ethylene urea", "Renewable Fuel Standard" ]
Parent Topic
Child Topic
    No Parent Topic