language-icon Old Web
English
Sign In

Tunnel magnetoresistance

Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough (typically a few nanometres), electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon. Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough (typically a few nanometres), electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon. Magnetic tunnel junctions are manufactured in thin film technology. On an industrial scale the film deposition is done by magnetron sputter deposition; on a laboratory scale molecular beam epitaxy, pulsed laser deposition and electron beam physical vapor deposition are also utilized. The junctions are prepared by photolithography. The direction of the two magnetizations of the ferromagnetic films can be switched individually by an external magnetic field. If the magnetizations are in a parallel orientation it is more likely that electrons will tunnel through the insulating film than if they are in the oppositional (antiparallel) orientation. Consequently, such a junction can be switched between two states of electrical resistance, one with low and one with very high resistance. The effect was originally discovered in 1975 by Michel Jullière (University of Rennes, France) in Fe/Ge-O/Co-junctions at 4.2 K. The relative change of resistance was around 14%, and did not attract much attention. In 1991 Terunobu Miyazaki (Tohoku University, Japan) found a change of 2.7% at room temperature. Later, in 1994, Miyazaki found 18% in junctions of iron separated by an amorphous aluminum oxide insulator and Jagadeesh Moodera found 11.8% in junctions with electrodes of CoFe and Co. The highest effects observed to date with aluminum oxide insulators are around 70% at room temperature. Since the year 2000, tunnel barriers of crystalline magnesium oxide (MgO) have been under development. In 2001 Butler and Mathon independently made the theoretical prediction that using iron as the ferromagnet and MgO as the insulator, the tunnel magnetoresistance can reach several thousand percent. The same year, Bowen et al. were the first to report experiments showing a significant TMR in a MgO based magnetic tunnel junction . In 2004, Parkin and Yuasa were able to make Fe/MgO/Fe junctions that reach over 200% TMR at room temperature. In 2008, effects of up to 604% at room temperature and more than 1100% at 4.2 K were observed in junctions of CoFeB/MgO/CoFeB by S. Ikeda, H. Ohno group of Tohoku University in Japan. The read-heads of modern hard disk drives work on the basis of magnetic tunnel junctions. TMR, or more specifically the magnetic tunnel junction, is also the basis of MRAM, a new type of non-volatile memory. The 1st generation technologies relied on creating cross-point magnetic fields on each bit to write the data on it, although this approach has a scaling limit at around 90–130 nm. There are two 2nd generation techniques currently being developed: Thermal Assisted Switching (TAS) and Spin-transfer torque. Magnetic tunnel junctions are also used for sensing applications. For example, a TMR-Sensor can measure angles in modern high precision wind vanes, used in the wind power industry.

[ "Magnetoresistance", "Ferromagnetism", "layer", "magnetic tunnelling" ]
Parent Topic
Child Topic
    No Parent Topic