language-icon Old Web
English
Sign In

System of systems

System of systems is a collection of task-oriented or dedicated systems that pool their resources and capabilities together to create a new, more complex system which offers more functionality and performance than simply the sum of the constituent systems. Currently, systems of systems is a critical research discipline for which frames of reference, thought processes, quantitative analysis, tools, and design methods are incomplete. The methodology for defining, abstracting, modeling, and analyzing system of systems problems is typically referred to as system of systems engineering. System of systems is a collection of task-oriented or dedicated systems that pool their resources and capabilities together to create a new, more complex system which offers more functionality and performance than simply the sum of the constituent systems. Currently, systems of systems is a critical research discipline for which frames of reference, thought processes, quantitative analysis, tools, and design methods are incomplete. The methodology for defining, abstracting, modeling, and analyzing system of systems problems is typically referred to as system of systems engineering. Commonly proposed descriptions—not necessarily definitions—of systems of systems, are outlined below in order of their appearance in the literature: Taken together, all these descriptions suggest that a complete system of systems engineering framework is needed to improve decision support for system of systems problems. Specifically, an effective system of systems engineering framework is needed to help decision makers to determine whether related infrastructure, policy and/or technology considerations as an interrelated whole are good, bad or neutral over time. The need to solve system of systems problems is urgent not only because of the growing complexity of today's challenges, but also because such problems require large monetary and resource investments with multi-generational consequences. While the individual systems constituting a system of systems can be very different and operate independently, their interactions typically expose and deliver important emergent properties. These emergent patterns have an evolving nature that stakeholders must recognize, analyze and understand. The system of systems approach does not advocate particular tools, methods or practices; instead, it promotes a new way of thinking for solving grand challenges where the interactions of technology, policy, and economics are the primary drivers. System of systems study is related to the general study of designing, complexity and systems engineering, but also brings to the fore the additional challenge of design. Systems of systems typically exhibit the behaviors of complex systems, but not all complex problems fall in the realm of systems of systems. Inherent to system of systems problems are several combinations of traits, not all of which are exhibited by every such problem: The first five traits are known as Maier's criteria for identifying system of systems challenges. The remaining three traits have been proposed from the study of mathematical implications of modeling and analyzing system of systems challenges by Dr. Daniel DeLaurentis and his co-researchers at Purdue University.

[ "Systems design", "systems engineering management" ]
Parent Topic
Child Topic
    No Parent Topic